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Abstract

Multivariate machine learning techniques for the classification of data from high-energy physics
(HEP) experiments have become standard tools in most HEP analyses. The multivariate classi-
fiers themselves have significantly evolved in recent years, also driven by developments in other
areas inside and outside science. TMVA is a toolkit integrated in ROOT which hosts a large vari-
ety of multivariate classification algorithms. They range from rectangular cut optimisation (using
a genetic algorithm) and likelihood estimators, over linear and non-linear discriminants (neural
networks), to sophisticated recent developments like boosted decision trees and rule ensemble
fitting. TMVA organises the simultaneous training, testing, and performance evaluation of all these
classifiers with a user-friendly interface, and expedites the application of the trained classifiers to
the analysis of data sets with unknown sample composition.
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1 Introduction

The Toolkit for Multivariate Analysis (TMVA) provides a ROOT-integrated environment
for the processing and parallel evaluation of sophisticated multivariate classification tech-
niques.! TMVA is specifically designed to the needs of high-energy physics (HEP) appli-
cations,? but should not be restricted to these. The package includes:

e Rectangular cut optimisation (binary splits, Sec. 5.1)

Projective likelihood estimator (Sec. 5.2)

Multi-dimensional likelihood estimator (PDE range-search approach, Sec. 5.3)

Linear discriminant analysis (H-Matrix and Fisher discriminants, Secs. 5.4, 5.5)

Artificial neural networks (three different implementations, Sec. 5.6)

Boosted /bagged decision trees (Sec. 5.7)
e Predictive learning via rule ensembles (RuleFit, Sec. 5.8)

The software package consists of object-oriented implementations in C++/ROOT for each
of these discrimination techniques and provides training, testing and performance evalua-
tion algorithms and visualization scripts. Detailed descriptions of all the TMVA classifiers
and their options are given in Sec. 5. Their training and testing is performed with the
use of user-supplied data sets in form of ROOT trees or text files, where each event can
have an individual weight. The sample composition (event classification) in these data
sets must be known. Preselection requirements and transformations can be applied on
this data. TMVA supports the use of variable combinations and formulas, just as they are
available for the Draw command of a ROOT tree.

TMVA works in transparent factory mode to guarantee an unbiased performance com-
parison between the classifiers: all classifiers see the same training and test data, and
are evaluated following the same prescriptions within the same execution job. A Fac-
tory class organises the interaction between the user and the TMVA analysis steps. It
performs preanalysis and preprocessing of the training data to assess basic properties of
the discriminating variables used as input to the classifiers. The linear correlation coef-
ficients of the input variables are calculated and displayed, and a preliminary ranking is
derived (which is later superseded by classifier-specific variable rankings). The variables
can be linearly transformed (individually for each classifier) into a non-correlated variable

'A classification problem corresponds in more general terms to a discretised regression problem. A
regression is the process that estimates the parameter values of a function, which predicts the value of a
response variable in terms of the values of other variables (the input variables).

*TMVA discriminates signal from background in data sets with unknown composition of these two
samples. In frequent use cases the background (sometimes also the signal) consists of a variety of different
populations with characteristic properties, which could call for classifiers with more than two discrimination
classes. However, in practice it is usually possible to serialize background fighting by training individual
classifiers for each background source, and applying consecutive requirements to these.




space or projected upon their principle components. To compare the signal-efficiency and
background-rejection performance of the classifiers, the analysis job prints tabulated re-
sults for some benchmark values (see Sec. 3.1.7), besides other criteria such as a measure
of the separation and the maximum signal significance. Smooth efficiency versus back-
ground rejection curves are stored in a ROOT output file, together with other graphical
evaluation information. These results can be displayed using ROOT macros, which are
conveniently executed via a graphical user interface that comes with the TMVA distri-
bution (see Sec. 3.2). The TMVA training job runs alternatively as a ROOT script, as
a standalone executable, where 1ibTMVA.so is linked as a shared library, or as a python
script via the PyROOT interface. Each classifier trained in one of these applications writes
its configuration and training results in result (“weight”) files, which consists of one text
and one ROOT file.

A light-weight Reader class is provided, which reads and interprets the weight files (inter-
faced by the corresponding classifiers), and which can be included in any C++ executable,
ROOT macro or python analysis job.

We have put emphasis on the clarity and functionality of the Factory and Reader inter-
faces to the user applications. All classifiers run with reasonable default configurations,
so that for standard applications that do not require particular tuning, the user script for
a full TMVA analysis will hardly exceed a few lines of code. For individual optimisation
the user can (and should) customize the classifiers via configuration strings.

This manual introduces the TMVA training Factory and Reader interfaces, and describes
design and implementation of the various multivariate classifiers. It is not the goal here
to provide a general introduction to multivariate analysis techniques. Other excellent re-
views exist on this subject (see, e.g., Refs. [1, 2, 3]). The document begins with a quick
TMVA start reference in Sec. 2, and provides a more complete introduction to the TMVA
design and its functionality in Sec. 3. Common tools used by several classifiers such as
the transformation of input variables are discussed in Sec. 4. All the TMVA classifiers
including their configurations and tuning options are described in Secs. 5.1-5.8.

Copyrights and credits

TMVA is an open source product. Redistribution and use of TMVA in source and binary
forms, with or without modification, are permitted according to the terms listed in the
BSD license.?

Several similar combined multivariate classification (“data mining”) efforts exist with ris-
ing importance in most fields of science and industry. In the HEP community the package
StatPatternRecognition [4] is in use. Other codes exist, which however often treat only
a subset of the most common MVAs [5]. The idea of parallel training and evaluation of
MVA-based classification in HEP has been pioneered by the Cornelius package, developed
by the Tagging Group of the BABAR Collaboration [6].

3For the BSD license, see http://tmva.sf.net/LICENSE.




2 TMVA Quick Start

To run TMVA it is not necessary to know much about its concepts or to understand the
detailed functionality of the multivariate classifiers. Better, just begin with the quick start
tutorial given below. One should note that the TMVA version obtained from the open
source software platform Sourceforge.net (where TMVA is developed), and the one which
is part of ROOT have a different directory structure for the example macros used for the
tutorial. Wherever differences in command lines occur, they are given for both versions.

2.1 How to download and build TMVA

TMVA is maintained at Sourceforge.net (http://tmva.sf.net). The TMVA project is built
upon ROOT (http://root.cern.ch/), so that for TMVA to run ROOT must be installed.
Since ROOT version 5.11/06, TMVA comes as integral part of ROOT and can be used
from the ROOT prompt without further preparation. For older ROOT versions or if
the latest TMVA features are desired, the TMVA source code can be downloaded from
Sourceforge.net. Since we do not provide prebuilt libraries for any platform, the library
must be built by the user (see below). The source code can be either downloaded as a
gzipped tar file or via CVS anonymous access

“> cvs -z3 -d:pserver:anonymous@tmva.cvs.sourceforge.net:/cvsroot/tmva \
co -r V03-04-00 -P TMVA

Code Example 1: TMVA source code download via CVS. The latest code (CVS HEAD) can be downloaded
by typing the same command without specifying a version: cvs -d... -z3 co -P TMVA.

While the source code is known to compile with VisualC++ on Windows (which is a
requirement for ROOT), we do not provide project support for this platform yet. For Unix
and most Linux flavours custom Makefiles are provided with the TMVA distribution, so
that the library can be built by typing

> cd TMVA

~/TMVA> source setup.sh # for c-shell family: source setup.csh
~/TMVA> cd src

~/TMVA/src> make

Code Example 2: Building the TMVA library under Linux/Unix using the provided Makefile. The setup.
[c]sh script must be executed to ensure the correct setting of symbolic links and library paths required
by TMVA.

After compilation, the library ~/TMVA/1ib/1ibTMVA. so should be present.
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2.2 \Version compatibility

TMVA can be run with any ROOT version above v4.02. The few occurring conflicts due to
ROOT source code evolution after v4.02 are intercepted in TMVA via C++ preprocessor
conditions.

2.3 The TMVA namespace

All TMVA classes are embedded in the namespace TMVA. For interactive access, or use in
macros the classes must thus be preceded by TMVA: :, or one may use the command using
namespace TMVA instead.

2.4 Example jobs

TMVA comes with example jobs for the training phase (this phase actually includes train-
ing, testing and evaluation) using the TMVA Factory, as well as the application of the
training results in a classification analysis using the TMVA Reader. The first task is per-
formed in the program TMVAnalysis, and the second in TMVApplication.

In the ROOT version of TMVA, the macros TMVAnalysis.C and TMVApplication.C are
located in the directory $RO0TSYS/tmva/test/.

In the Sourceforge.net version, the macros TMVAnalysis.C and TMVApplication.C are
located in ~/TMVA/macros. At Sourceforge.net we also provide these examples in form
of the C++ executables TMVAnalysis.cxx and TMVApplication.cxx, which are located
in ~/TMVA/examples. To create the executables, type cd ~/TMVA/example; make, and
then simply execute them by typing ./TMVAnalysis and ./TMVApplication. To illus-
trate how TMVA can be used in a python script via PyROOT we also provide the script
TMVAnalysis.py located in ~/TMVA/python, which again has the same functionality as
the macro TMVAnalysis.C.

2.5 Running the example

The easiest way to get started with TMVA is to run the TMVAnalysis.C example macro. It
uses an academic toy data set for training and testing, which consists of four linearly cor-
related, Gaussian distributed discriminating input variables, with different sample means
for signal and background. All classifiers are trained, tested and evaluated using the toy
dataset in the same way the user is expected to proceed for his or her own data. It is a
valuable exercise to look at the example file in more detail. Most of the command lines
therein should be self explaining, and one will easily find how they need to be customized
to run TMVA on a real use case. A detailed description is given in Sec. 3.

The toy data set used by the example is included in the Sourceforge.net download. For
the ROOT distribution, the example macro TMVAnalysis.C automatically fetches the data
file from the web using the corresponding TFile constructor TFile: : Open("http://root.
cern.ch/files/tmva example.root"). The example ROOT macro can be run from any
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designated test directory ~/workdir, after adding the macro directory to ROOT’s macro
search path:

~/workdir> echo "Unix.*.Root.MacroPath: ~/TMVA/macros" >> .rootrc
~/workdir> root -1 ~/TMVA/macros/TMVAnalysis.C

Code Example 3: Running the example TMVAnalysis.C using the Sourceforge.net version of TMVA.

~/workdir> echo "Unix.*.Root.MacroPath: $RO0TSYS/tmva/test" >> .rootrc
~/workdir> root -1 $RO0TSYS/tmva/test/TMVAnalysis.C

Code Example 4: Running the example TMVAnalysis.C using the ROOT version of TMVA.

The training job provides formatted output logging containing analysis information such
as: signal and background linear correlation matrices for the input variables, variable
ranking, summaries of the classifier configurations, goodness-of-fit evaluation for PDFs
(if requested), signal and background correlations between the various classifiers, their
signal/background-likeness decision overlap, signal efficiencies at benchmark background
rejection rates as well as other performance estimators, and overtraining validation output.

2.5.1 Displaying the results

Besides so-called “weight” files containing the classifier-specific training results, TMVA
also provides a variety of control and performance plots that can be displayed via a set
of ROOT macros available in ~/TMVA/macros/ or $RO0OTSYS/tmva/test/ for the Source-
forge.net and ROOT distributions of TMVA, respectively. The macros are summarized
in Table 1. At the end of the example job a graphical user interface (GUI) is displayed,
which conveniently allows to run these macros (see Fig. 1).

Examples for plots produced by these macros are given in Figs. 3-5. The distributions of
the input variables for signal and background according to our example job are shown in
Fig. 2. It is useful to quantify the correlations between the input variables. These are
drawn in form of a scatter plot with the superimposed profile for two of the input variables
in Fig. 3 (upper left). As will be discussed in Sec. 4, TMVA allows to perform a linear
decorrelation transformation of the input variables prior to the classifier training. The
result of such decorrelation is shown at the upper right hand plot of Fig. 3. The lower
plots display the linear correlation coefficients between all input variables, for the signal
and background training samples.

Figure 4 shows some of the classifier output distributions for signal and background events
from the test sample. By TMVA convention, signal (background) events accumulate at
large (small) classifier output values. Hence, cutting on the output and retaining the
events with yyya larger than the cut requirement selects signal samples with efficiencies
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(9) PDFs of Classifiers

{10} [ Rule Ensemble Importance Plots |
{11} Quit

Figure 1: Graphical user interface (GUI) to execute macros displaying training, test and evaluation results
(see Table 1). The GUI can be launched manually by executing the scripts ~/TMVA/macros/TMVAGui.
C (Sourceforge.net version) or $RO0TSYS/tmva/test/TMVAGui.C (ROOT version). In short, the buttons
behave as follows: (la) plots the signal and background distributions of the input variables (training
sample), (1b) the same after decorrelation transformation, (1c) the same after PCA decorrelation (these
latter two buttons only display results if the corresponding transformations have been requested by at least
one classifier), (2a—c) scatters (with superimposed profiles) of all pairs of input variables for signal and
background for the three transformation types (training sample), (3) linear correlation coefficients between
the input variables for signal and background (training sample), (4a) signal and background distributions
for the trained classifiers (test sample), (4b) the corresponding probability distributions, (5a) signal and
background efficiencies (and purities assuming an equal number of signal and background events) as a
function of the cut on the classifier outputs, (5b) background rejection versus signal efficiency obtained
when cutting on the classifier outputs (ROC curve, from the test sample). The following buttons launch
classifier-specific macros: (6) reference distributions (PDFs) used for the likelihood classifier compared
to the training data, (7a) architecture of the MLP neural network, (7b) convergence of the MLP error
parameter for the training and test samples (check for overtraining), (8) plots a sketch of the first decision
tree in the forest, (9) compares the classifier PDF's to the training data, (10) plots the importance for the
RuleFit classifier, and (11) quits the GUI. Titles in brackets indicate actions that can only be taken if the
corresponding transformations or classifiers have been applied/used during the training.

and purities that respectively decrease and increase with the cut value. The resulting
relations between background rejection versus signal efficiency are shown in Fig. 5 for all
classifiers that were used in the example macro. This plot belongs to the class of Receiver
Operating Characteristic diagrams, which in its standard form shows the true positive rate
versus the false positive rate for the different possible cutpoints of a hypothesis test.

More analysis plots are available, in particular those that validate specific classifiers. For
example, the macro likelihoodrefs.C compares the probability density functions used
by the likelihood classifier to the normalised variable distributions of the training sample.
It is also possible to visualize the MLP neural network architecture and to draw decision
trees (see Table 1 for a complete summary of the available scripts).
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Figure 2: Example plots for input variable distributions.

3 Using TMVA

A typical TMVA analysis consists of two independent phases: the training phase, where
the multivariate classifiers are trained, tested and evaluated, and an application phase,
where selected classifiers are applied to the concrete classification problem they have been
trained for. An overview of the code flow for these two phases as implemented in the
examples TMVAnalysis.C and TMVApplication.C (see Sec. 2.4), is sketched in Fig. 6.

In the training phase, the communication of the user with the data sets and the classifiers
is performed via a Factory object, created at the beginning of the program. The TMVA
Factory provides member functions to specify the training and testing data sets, to register
the discriminating input variables, and to book the multivariate classifiers. After the
configuration the Factory calls for training, testing and the evaluation of the booked
classifiers. Classifier-specific result (“weight”) files are created after the training phase.

The application of training results to a data set with unknown sample composition is
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Figure 3: Correlation between input variables. Upper left: correlations between var3 and var4 for the
background training sample. Upper right: the same after applying a decorrelation transformation (see
Sec. 4.1.1). Lower plots: linear correlation coefficients for the signal and background training samples.

governed by the Reader object. During initialization, the user registers the input variables*
together with their local memory addresses, and books the classifiers that were found to
be the most appropriate ones during the training phase. As booking argument, the bulk
name of the weight file is given, which provides for each of the classifiers full and consistent
configuration according to the training results. Within the event loop, the input variables
are updated for each event, and the selected classifier outputs are computed.

3.1 The Factory

The TMVA training phase begins by instantiating a Factory object

4This somewhat redundant operation is required to verify the correspondence between the Reader
analysis and the weight files used.
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Figure 4: Example plots for classifier output distributions for signal and background events from the
academic test sample. Shown are likelihood (upper left), PDE range search (upper right), MLP (lower
left) and boosted decision trees.

TMVA: :Factory* factory
new TMVA::Factory( "<JobName>", targetFile, "<options>" );

Code Example 5: Instantiating a Factory class object. The first argument is the user-defined job name
which will also appear in the name of the weight files containing the training results. The second argument
is the pointer to a writable TFile target file created by the user, where control and performance histograms
are stored. Currently the only option that can be specified for the Factory is “V” for verbose print out.

3.1.1 Specifying training and testing data

The input data sets used for training and testing of the multivariate classifiers need to
be handed to the Factory. TMVA supports ROOT TTree and derived TChain objects
as well as text files. If ROOT trees are used, the signal and background events can be
located in the same or in different trees. Overall weights can be specified for the signal and
background training data (the treatment of event-by-event weights is discussed below).
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Figure 5: Example for the background rejection versus signal efficiency obtained for the various classifiers
after evaluating the test sample.

Specifying training data in ROOT tree format with signal and background events being
located in different trees:

TTree*x sigTree = (TTreex*)sigSource->Get( "<YourSignalTreeName>" );
TTree* bkgTree = (TTree*)bkgSource->Get( "<YourBackgrTreeName>" );

Double_t sigWeight
Double_t bkgWeight

1.0; // overall weight for all signal events
1.0; // overall weight for all background events

factory->SetInputTrees( sigTree, bkgTree, sigWeight, bkgWeight );

Code Example 6: Registration of signal and background ROOT trees read from TFile sources. Overall
signal and background weights can also be specified. The TTree object may be replaced by a TChain.

Specifying training data in ROOT tree format with signal and background events being
located in the same tree:
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Figure 6: Left: sequence flow (top to bottom) of a typical TMVA training application. The user script can
be a ROOT macro, C++ executable, python script or similar. The user creates a target ROOT TFile,
which is used by the TMVA Factory object to write histograms and trees. The Factory, after creation by
the user, organises the user’s interaction with the TMVA modules. It is the only object directly created
by the user. First the discriminating variables that must be TFormula-compliant functions of branches
in the signal and background training tree are registered. Then, selected classifiers are booked through a
type identifier, and configuration options are specified via an option string. The TMVA analysis proceeds
by consecutively calling the training, testing and performance evaluation methods of the Factory. The
training results for all classifiers used are written to custom weight files and the evaluation histograms are
stored in the target file. They can be analysed with specific macros that come with TMVA (cf. Table 1).
Right: sequence flow (top to bottom) of a typical TMVA analysis application. The classifiers that have
been selected as appropriate in the preceding training and evaluation step are now used to classify data
of unknown signal and background composition. First, a Reader class object is created, which serves as
interface to the classifiers’ response, just as was the Factory for the training and performance evaluation.
The discriminating variables and references to locally declared memory placeholders are registered with
the Reader. The variable names must coincide with those used for the training. The appropriate classifiers
are booked through identification with their weight file, which fully configures the classifier. Only the bulk
part of the name (that is the file name without extension) is given. The Reader adds the appropriate file
extensions .txt and .root for the I/O operations. The user then runs the event loop, where for each event
the values of the input variables are copied to the reserved memory addresses, and the MVA response
values are computed. The user is responsible for the further use of the information.
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TTree* inputTree = (TTreex)source->Get( "<YourTreeName>" );

TCut signalCut = ...; // how to identify signal events in the TTree
TCut backgrCut = ...; // how to identify backgr. events in the TTree

factory->SetInputTrees( inputTree, signalCut, backgrCut );

Code Example 7: Registration of a single ROOT tree containing the input data for signal and background,
read from a TFile source. The TTree object may be replaced by a TChain. The cuts identify the event
species.

Specifying training data in text format:

// Text file format (avaliable types: ’F’ and ’I’)

//  varl/F:var2/F:var3/F:var4/F

// 0.21293 -0.49200 -0.58425 -0.70591

00  ooc

TString sigFile = "signal.txt"; // text file for signal
TString bkgFile = "background.txt"; // text file for background

Double_t sigWeight
Double_t bkgWeight

1.0; // overall weight for all signal events
1.0; // overall weight for all background events

factory->SetInputTrees( sigFile, bkgFile, sigWeight, bkgWeight );

Code Example 8: Registration of signal and background text files. Names and types of the input variables
are given in the first line, followed by the values.

3.1.2 Selecting variables and variable transformations

The variables in input trees that are used to train the classifiers are registered with the
Factory using the AddVariable method. It takes the variable name (string) and optionally
its type (’F? and ’ I’ are supported), which can be particularly useful for discrete variables
(use >I?). If no type is given, *F’ is used. The name must have a correspondence in the
input ROOT tree or text file. It is also possible to specify variable expressions, just as for
the TTree: :Draw command (the expression is interpreted as a TTreeFormula).®

There are restrictions in the use of array index specifications (true vector types in general): expressions
like "var1[0]" are not permitted.
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factory->AddVariable( "<YourVari>", T2 );
factory->AddVariable( "log(<YourVar2>)", ’F’ )
factory->AddVariable( "<YourVar3>+<YourVar4>", ’F’ );

Code Example 9: Declaration of variables used to train the classifiers. Each variable is specified by its
name in the training tree (or text file), and optionally a type (°F’ for float and I’ for integer, *F’ is
default). Here, YourVar1 has discrete values and is thus declared as an integer. Just as in the TTree: :Draw
command, it is also possible to specify expressions of variables.

Individual events can be weighted, with the weights being a column or a function of
columns of the input data sets. To tell TMVA to use these weights in the classifier
training use the following command:

factory->SetWeightExpression( "<YourWeightExpression>" );

Code Example 10: Specification of individual weights applied to the training events. The expression must
be a function of variables present in the input data set.

Some of the classifiers normalise the input variables so that min/max(z;) = 0/1, Vi =
1,...,nvr. These are: Fisher discriminant, H-Matrix, the Clermont-Ferrand and MLP
neural networks (customizable). In the present release of TMVA this option cannot be
customized (excepting the MLP where the option Normalize exists), so that the user must
be aware of it when interpreting the training results (weights).

3.1.3 Preparation of training and testing data

The input events that are handed to the Factory are internally copied and split into
one training and one testing ROOT tree. This guarantees a statistically independent
evaluation of the classifiers based on the test sample.® The numbers of events used in
both samples are specified by the user. They must not exceed the entries of the input
data sets. In case the user has provided a ROOT tree, the event copy is accelerated by
disabling all branches not used by the input variables.

It is possible to apply selection requirements (cuts) to the input events. These requirements
can depend on any variable present in the input data sets, i.e., they are not restricted to
the variables used by the classifiers. The full command is as follows:

A fully unbiased training and evaluation requires at least three statistically independent data sets. See
comments in Footnote 9 on page 17.
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TCut preselectionCut = "<YourSelectionString>";

factory->PrepareTrainingAndTestTree( preselectionCut,
<NEventsTrain>, <NEventsTest> );

Code Example 11: Preparation of the internal training and testing trees. The signal and background events
are split into (NEventsTrain) training events (equal number of both event species), and (NEventsTest) test
events (unequal numbers possible). All selected events satisfy the preselection criteria. If (NEventsTest)
is not specified, all remaining events are used after splitting off the training sample. For cases with
very low statistics, the user may force TMVA to reuse the training events for testing with the command
factory->PrepareTrainingAndTestTree (preselectionCut,-1). In that case the evaluation may over-
state the performance (cf. Sec. 3.1.8).

3.1.4 Booking the classifiers

All classifiers are booked via the Factory by specifying the classifier’s type, plus a unique
name given by the user, and a set of specific configuration options encoded in a string
qualifier.” If the same type of classifier is booked several times with different options
(which is useful to optimise the configuration of a classifier), the specified names should
be different, allowing to separate the instances and their weight files. A booking example
for the likelihood classifier is given in Code Example 12 below. Detailed descriptions of
the configuration options are given in Secs. 4 and 5, and the default booking commands
for all classifiers are given in Appendix A. With the classifier booking the initialization of
the Factory is complete and no classifier-specific actions are left to do. The Factory takes
care of the subsequent training, testing and evaluation of the classifiers.

factory->BookMethod( TMVA: :Types: :kLikelihood, "LikelihoodD",
"!TransformQutput : Spline=2:NSmooth=5:Preprocess=Decorrelate" );

Code Example 12: Example booking of the likelihood classifier. The first argument is a unique type
enumerator (the avaliable types can be looked up in src/Types.h), the second is a user-defined name
which must be unique among all booked classifiers, and the third a configuration option string that is
specific to the classifier. For options that are not set in the string default values are used. The syntax of
the options should become clear from the above example. Individual options are separated by a ’:’. Boolean
variables can be set either explicitly as MyBoolVar=True/False, or just via MyBoolVar/!MyBoolVar. All
specific options are explained in Secs. 4 and 5.

3.1.5 Training the classifiers

The training of the booked classifiers is invoked by the command

"In the TMVA package, a classifier is termed Method. According to that terminology, the Factory has
a function BookMethod, and all methods are derived from the abstract classes IMethod and MethodBase.
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factory->TrainAl1lMethods();

Code Example 13: Executing the classifier training via the Factory.

The training results are stored in the weight files which are saved in the directory weights
(which, if not existing is created). The weight files are named Jobname ClassifierName.
weights. (extension), where the job name has been specified at the instantiation of the
Factory, and ClassifierName is the unique classifier name specified in the booking com-
mand. Each classifier writes two custom weight files, one in text format (extension is txt)
where the classifier configuration options, controls and training weights are stored, and
another in ROOT format (extension is root) containing TObject-derived objects (such as
reference histograms for the likelihood classifier).

In addition to the classifier’s output value ynva, which is typically used to place a cut
for the classification of an event as either signal or background, or which could be used
in a subsequent likelihood fit, TMVA also provides signal and background PDFs, §g(p)-.
The PDFs can be used to derive classification probabilities for individual events. The
techniques used to estimate the shapes of the PDFs are those developed for the likelihood
classifier (see Sec. 5.2.2 for details) and can be customized individually for each method
(the control options are given in Sec. 5). The probability for event i to be of signal type

is given by,
. fs - 9s(i)
Pyva(z) = — —, 1
K PR N (SR W
where fs = Ns/(Ns + Np) is the expected signal fraction, and Ng(p) are the expected
number of signal (background) events (default is fs = 0.5).%

3.1.6 Testing the classifiers

The trained classifiers are applied to the testing data and provide scalar outputs according
to which an event can be classified as either signal or background. The classifier outputs
are stored in the test tree to which a column is added for each classifier. The tree is
eventually written to the target file and can be directly analysed in a ROOT session. The
testing of all booked classifiers is invoked by the command

factory->TestAllMethods();

Code Example 14: Executing the validation (testing) of the MVA classifiers via the Factory.

8The Puva distributions may exhibit a somewhat peculiar structure with frequent narrow peaks. They
are generated by regions of classifier output values in which §s « ¢B for which Pvva becomes a constant.
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3.1.7 Evaluating the classifi ers

The Factory and data set classes of TMVA perform a preliminary assessment of the input
variables used by the classifiers, such as computing linear correlation coefficients and rank-
ing the variables according to their separation (see bullet below). The results are printed to
standard output. After training and testing, also the linear correlation coefficients among
the classifier outputs are printed. Moreover, overlap matrices are derived (and printed)
for signal and background that determine the fractions of signal and background events
that are equally classified by each pair of classifiers. This is useful when two classifiers
have similar performance, but a significant fraction of non-overlapping events. In such
a case a combination of the classifiers (e.g., in a Committee classifier) could improve the
performance (this can be extended to any combination of any number of classifiers).

The performance evaluation in terms of efficiency, background rejection, etc., of the trained
and tested classifiers is invoked by the command

factory->EvaluateAllMethods();

Code Example 15: Executing the performance evaluation via the Factory.

The optimal classifier to be used for a specific analysis strongly depends on the problem
and no general recommendations can be given. To help with the choice TMVA computes
a number of benchmark quantities that assess the performance of the classifiers on the
independent test sample. These are

e The signal efficiency at three representative background efficiencies (the efficiency is
equal to 1 — rejection) obtained from a cut on the classifier output. Also given is
the area of the background rejection versus signal efficiency function (the larger the
area the better the performance).

e The separation of a classifier y, defined by the integral [6]

1 / (IgS(y) — :‘)B(y))2d (2)

2) gsty)+isly)

2

where §js and g are the signal and background PDFs of y, respectively. The sep-
aration is zero for identical signal and background shapes, and it is one for shapes
with no overlap.

e The discrimination significance of a classifier, defined by the difference between the
classifier means for signal and background divided by the quadratic sum of their
root-mean-squares.

e The average [ yu(9s(y))dy of the signal py-transform [7]. The y-transform of a clas-
sifier is the transformation that gives a uniform background distribution. In this
way, the signal distribution of the u-transform can be directly compared among the
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various classifiers. The stronger the peak towards one, the better is the discrimina-
tion. This quantity has been removed from the standard evaluation output writien
by the Factory (for space reasons). It can be retrieved for each method through an
appropriate accessor.

The results of the evaluation are printed to standard output. In addition, smooth back-
ground rejection/efficiency versus signal efficiency curves (and the signal y-transform) are
written to the target ROOT file, and can be plotted using custom macros (see Sec. 3.2).

3.1.8 Overtraining

Overtraining occurs when a data mining problem has too few degrees of freedom, be-
cause too many model parameters of a classifier were adjusted to too few data points.
The sensitivity to overtraining therefore depends on the classifier. For example, a Fisher
discriminant can hardly ever be overtrained, while, without the appropriate counter mea-
sures, boosted decision trees usually suffer from at least partial overtraining, owing to
their large number of nodes. Overtraining leads to a seeming increase in the classification
performance over the objectively achievable one, if measured on the training sample, and
to an effective performance decrease when measured with an independent test sample. A
convenient way to detect overtraining and to measure its impact is therefore to compare
the classification results between training and test samples. Such a test is performed by
TMVA with the results printed to standard output.

Various classifier-specific solutions to counteract overtraining exist. For example, binned
likelihood reference distributions are smoothed before estimating their shapes, or unbinned
kernel density estimators smear each training event before computing the PDF; neural net-
works steadily monitor the convergence of the error estimator between training and test
samples® suspending the training when the test sample has passed its minimum; the num-
ber of nodes in boosted decision trees can be reduced by removing insignificant ones (“tree
pruning”), etc.

3.2 ROOT macros for plotting training, testing and evaluation results

TMVA provides a simple GUI (TMVAGui . C, see Fig. 1), which interfaces ROOT macros that
visualize the various steps of the training analysis. The macros are respectively located in
~/TMVA/macros/ (Sourceforge.net distribution) and $RO0TSYS/tmva/test/ (ROOT distri-
bution), and can also be executed from the command line. They are described in Table 1.
All plots drawn are saved as png (or optionally eps, gif) files in the macro subdirectory
plots which, if not existing, is created.

The binning and histogram boundaries for some of the histograms created throughout the

9 Proper training and validation requires three statistically independent data sets: one for the parameter
optimisation, another one for the overtraining detection, and the last one for the performance validation.
In TMVA, the last two samples have been merged to increase statistics. The (usually insignificant) bias
introduced by this on the evaluation results does not affect the analysis as far as cut efficiencies for the
classifiers are independently validated with data.
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training, testing and evaluation phases are controlled via the singleton class TMVA: : Config.
They can be modified as follows:

// To modify settings for the variable plotting, one can use the
// struct TMVA::Config::VariablePlotting

TMVA: :gConfig() .variablePlotting.timesRMS = 4.0;
TMVA: :gConfig() .variablePlotting.nbinslD = 60;
TMVA: :gConfig() .variablePlotting.nbins2D = 300;

Code Example 16: Modifying global parameter settings for the plotting of the discriminating input vari-
ables. The values given are the TMVA defaults.

3.3 The Reader

After training and evaluation, the most performing classifiers are selected and used to clas-
sify events in data samples with unknown signal and background composition. An example
of how this application phase is carried out is given in ~/TMVA/macros/TMVApplication.C
(Sourceforge.net) and $RO0TSYS/tmva/test/TMVApplication.C (ROOT). Analogously to
the Factory, the communication between the user application and the classifiers is inter-
faced by the TMVA Reader, which is created by the user:

TMVA: :Reader* reader = new TMVA::Reader();

Code Example 17: Instantiating a Reader class object.

3.3.1 Specifying input variables

The user registers the names of the input variables with the Reader. They are required
to be the same (and in the same order) as the names used for training (this requirement
is not actually mandatory, but enforced to ensure the consistency between training and
application). Together with the name is given the address of a local variable, which carries
the updated input values during the event loop.

Float_t localVarl, localVar2, localVar3;

reader->AddVariable( "<YourVari>", &localVarl );
reader->AddVariable( "log(<YourVar2>)", &localVar?2 ) ;
reader->AddVariable( "<YourVar3>+<YourVar4>", &localVar3 );

Code Example 18: Declaration of the variables and references used as input to the classifiers. The order
and naming of the variables must be consistent with the ones used for the training. The local variables
are updated during the event loop, and through the references their values are known to the classifiers.
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Macro

Description

variables.C

correlationscatter.C

correlations.C

mvas.C

mvaeffs.C

efficiencies.C

Plots the signal and background MVA input variables (train-
ing sample). The second argument sets the preprocessing type
(type=0, default, for no preprocessing, and type=1, 2 for decor-
related and PCA-transformed variables, cf. Sec. 4.1).

Plots superimposed scatters and profiles for all pairs of input
variables used during the training phase (separate plots for signal
and background). As above, the second argument determines
whether the original (type=0, default) or preprocessed (type=
1,2) input variables are plotted.

Plots the linear correlation matrices for the signal and back-
ground training samples.

Plots the classifier response distributions of the test sample for
signal and background. The second argument (HistType=1) al-
lows to plot the probability distributions of the classifiers for an
equal number of signal and background events (see Sec. 3.1.5).

Signal and background efficiencies, obtained from cutting on the
classifier outputs, versus the cut value. Also shown are the signal
purity and the signal efficiency times signal purity assuming an
equal number of signal and background events before cutting.

Background rejection (second argument type=2, default), or
background efficiency (type=1), versus signal efficiency for the
classifiers (test sample). The efficiencies are obtained by cutting
on the classifier outputs. This is traditionally the best plot to
assess the overall discrimination performance (ROC curve).

likelihoodrefs.C

network.C

annconvergencetest.C

BDT.C(i)

mvarefs.C

Plots the reference PDF's of all input variables for the likelihood
classifier and compares it to original distributions obtained from
the training sample.

Draws the TMVA-MLP architecture including weights after
training (does not work for the other ANNs).

Plots the MLP error-function convergence versus the training
epoch for training and test events (does not work for the other
ANNG5).

Draws the ith decision tree of the trained forest (default is i=1).
The second argument is the weight file that contains the full
architecture of the forest (default is weights/MVAnalysis BDT.
weights.txt).

Plots the classifier PDFs used to compute the probability re-
sponse, and compares it to the original distributions.

Table 1: List of available ROOT macros for the representation of the TMVA training and evaluation
results. All macros take as first argument the name of the ROOT file containing the histograms (default
is TMVA.root). The lower macros concern specific classifiers, and require that these classifiers have been

included in the training.
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3.3.2 Booking selected classifiers

The classifier(s) found to be most performing are booked with the Reader, using the weight
files from the preceeding training job:

reader->BookMVA( "<YourClassifierName>", "<TheWeightFile.weights>" );

Code Example 19: Booking a multivariate classifier. The first argument is a user defined name to dis-
tinguish between classifiers (it does not need to be the same name as for training, although this could
be a useful choice). The true type of the classifier and its full configuration are read from the weight file
specified in the second argument.

3.3.3 Requesting the classifi er output

Within the event loop, the response value yyyva of a particular classifier for a given set of
input variables (that are computed by the user) is obtained with the commands:

localVarl = treeVari;
localVar2 = TMath::Log(treeVar2);
localVar3 = treeVar3 + treeVar4;

Double_t mvaValue = reader->EvaluateMVA( "<YourClassifierName>" );

Code Example 20: Updating the local variables for an event, and obtaining the corresponding classifier
output.

The classifier output ymyva may then for example be cut on to increase the signal purity of
the sample (the achievable purities can be read off the evaluation results obtained during
the test phase), or it could enter a maximum-likelihood fit, etc.

The rectangular cut classifier is special since it returns a binary answer for a given set of
input variables and cuts. The user must specify the desired signal efficiency to define the
working point according to which the Reader will choose the cuts.

Bool_t passed = reader->EvaluateMVA( "Cuts", signalEfficiency ) ;

Code Example 21: For the cut classifier, the second parameter gives the desired signal efficiency according
to which the cuts are chosen. The return value is 1 for passed and 0 for retained.

Instead of the classifier response values, one may also retrieve the ratio (1) from the Reader,
which, if properly normalised to the expected signal fraction in the sample, corresponds
to a probability. The corresponding command is
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Double_t pSig = reader->GetProba( "<YourClassifierName>", sigFraction );

Code Example 22: Requesting the event’s signal probability from a classifier. The signal fraction is the
parameter fs in Eq. (1).

3.4 Which classifi er should | use for my problem?

There is obviously no common answer to that question. To guide the user, we have at-
tempted an assessment of various relevant classifier properties in Table 1. Simplicity is
a virtue, but only if it is not at the expense of discrimination power. Robustness with
respect to overtraining could become an issue when the training sample is scarce. Some
methods require more attention than others in this regard. For example, boosted deci-
sion trees are particularly vulnerable to overtraining if used without care. To circumvent
overtraining a problem-specific adjustment of the pruning strength parameter is required.
To assess whether a linear discriminant analysis (LDA) could be sufficient for a classifi-
cation problem, the user is advised to analyse the correlations among the discriminating
variables by inspecting scatter and profile plots (it is not enough to print the correlation
coefficients, which by definition are linear only). Using an LDA greatly reduces the number
of parameters to be adjusted and hence allow smaller training samples. For problems that
require a high degree of optimisation and allow to form a large number of input variables,
complex nonlinear methods like neural networks, boosted decision trees and RuleFit are
more appropriate. For RuleFit we emphasize that the TMVA implementation differs from
Friedman-Popescu’s original code [19], with (yet) better robustness and out-of-the-box
performance for the latter version. In particular, the behaviour of the original code with
respect to nonlinear correlations and the curse of dimensionality would have merited two
stars. We also point out that the excellent performance for by majority linearly corre-
lated input variables is achieved somewhat artificially by adding a Fisher-like term to the
RuleFit classifier (this is true for both implementations, cf. Sec. 5.8).

4 Data Preprocessing

A certain number of tools are centrally available in TMVA and can be accessed by all
multivariate classifiers. For example, it is possible to preprocess the data prior to pre-
senting it to the classifiers. Preprocessing can be useful to reduce correlations among the
discriminating variables, to transform their shapes, or to accelerate the response time of
a classifier.

4.1 Transforming input variables

Currently two preprocessing transformations are implemented in TMVA: decorrelation via
the square-root of the covariance matrix and via a principal component decomposition.
Technically, any transformation of the input variables is performed “on the fly” when the
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CLASSIFIERS
CRITERIA Cuts Likeli- PDE- H- Fisher  ANN BDT Rule-
hood RS Matrix Fit
None/linear * Hok * * Hok ok * ok
Perfor-  correlations
mance Nonlinear o o * o o Aok ok *
correlations
Training ) ok ok ok *k * ) *
Speed R
esponse Fok ok ) Fok ok ok *
Robust-  Overtraining *k * ok Jok * o *
ness Weak variables *ok * o *k *k * *k *
Curse of dimensionality ) *k ) ok *k * * *
Transparency *x *k * ok *x ) ) )

Table 1: Assessment of classifier properties. The symbols stand for the attributes “good” (xx), “OK” ()
and “bad” (o). “Curse of dimensionality” refers to the “burden” of required increase in training statistics
and processing time when adding more input variables. See also comments in text.

event is requested from the central DataSet class. Each classifier carries a variable transfor-
mation type together with a pointer to the object of its transformation class (all inherited
from VariableTransformBase), which is owned by the DataSet. If no preprocessing is
requested, an identity transform is applied. The DataSet registers the requested transfor-
mations and takes care not to recreate an identical transformation object (if requested)
during the training phase. Hence if two classifiers wish to apply the same transformation,
a single object is shared between them. Each classifier writes its transformation into its
weight file once the training has converged. For testing and application of a classifier, the
transformation is read from the weight file and a corresponding transformation object is
created. Here each classifier owns its transformation so that no sharing of potentially dif-
ferent transformation objects occurs (they may have been obtained with different training
data and/or under different conditions). A schematic view of the variable transformation
interface used in TMVA is drawn in Fig. 7.

4.1.1 Variable decorrelation

A drawback of, for example, the projective likelihood classifier (see Sec. 5.2) is that it
ignores correlations among the discriminating input variables. Because in most realistic
use cases this is not an accurate conjecture it leads to performance loss. Also other
classifiers, such as rectangular cuts or decision trees, and even multidimensional likelihood
approaches underperform in presence of variable correlations.

Linear correlations, measured in the training sample, can be taken into account in a
straightforward manner through computing the square-root of the covariance matrix. The
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Figure 7: Schematic view of the variable transformation interface implemented in TMVA. Each concrete
classifier derives from MethodBase (which is interfaced by IMethod), which holds a protected member
object of type VariableTransformBase. The construction of the concrete variable transformation object
proceeds in MethodBase according to the transformation method requested in the option string. The
events used by the classifiers for training, testing and final classification analysis are read via an API of
the VariableTransformBase class, which itself reads the events from the DataSet. The DataSet fills the
current values into the reserved event addresses (the event content may either stem from the training
or testing trees, or is set by the user’s application via the Reader for the final classification analysis).
The VariableTransformBase interface class ensures the proper transformation of all events seen by the
classifiers.

square-root of a matrix C is the matrix C’ that multiplied with itself yields C: C =
(C")2. TMVA computes the square-root matrix by means of diagonalising the (symmetric)
covariance matrix

D=5sT'cs = (' =8vDSsT, (3)

where D is a diagonal matrix, and where the matrix S is symmetric. The linear decorre-
lation of the input variables is then obtained by multiplying the initial variable tuple by
the inverse of the square-root matrix.

The transformations are performed separately for signal and background events because
their correlation patterns are usually different.'® The decorrelation is complete only for
linearly correlated and Gaussian distributed variables. In real-world use cases this is not
often the case, so that sometimes only little additional information can be recovered by
the decorrelation procedure. For highly non-linear problems the performance may even
become worse with linear decorrelation. Non-linear classifiers without prior variable decor-
relation should be used in such cases.

0Different transformations for signal and background events are only useful for methods that explicitly
distinguish signal and background hypotheses. This is the case for the likelihood and PDERS classifiers.
For all other methods the user must choose which transformation to use.
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4.1.2 Principal component decomposition

Principal component decomposition or principal component analysis (PCA) as presently
applied in TMVA is not very different from the above linear decorrelation. In common
words, PCA is a linear transformation that rotates a sample of data points such that the
maximum variability is visible. It thus identifies the most important gradients. In the
PCA-transformed coordinate system, the largest variance by any projection of the data
comes to lie on the first coordinate (denoted the first principal component), the second
largest variance on the second coordinate, and so on. PCA can thus be used to reduce the
dimensionality of a problem (initially given by the number of input variables) by removing
dimensions with insignificant variance. This corresponds to keeping lower-order principal
components and ignoring higher-order ones. This latter step however goes beyond straight
variable transformation as performed in the preprocessing steps discussed here (it rather
represents itself a full classifier). Hence all principal components are retained here.

The signal (U = S) and background (U = B) tuples of principal components x},° (i) =
(xgg (1),... ’:Egy(;lavar(i)) of a tuple of input variables x(i) = (z1(%),...,Zn.,, (7)), measured
for the event i of class U, are obtained by the transformation

Nvar

obS(0) = (v,ei) — o) ey, VE= 1,70 (4)
=1

The tuples Xy and vgc ) are the sample means and eigenvectors, respectively. They are com-

puted by the ROOT class TPrincipal. The matrix of eigenvectors Viy = (VS), et ,vgb"‘“))

obeys the relation
Cv-Vu=Dy-Vy, (5)

where C is the covariance matrix of the sample U, and Dy is the tuple of eigenvalues.
As for the preprocessing described in Sec. 4.1.1, the transformation (4) eliminates linear
correlations for Gaussian variables.

4.2 Binary Search Trees

When frequent iterations over the training sample need to be performed, it is helpful to
sort the sample before using it. Event sorting in binary trees is employed by the classifiers
rectangular cut optimisation and PDERS.

Efficiently searching for and counting events that lie inside a multidimensional volume
spanned by the discriminating input variables is accomplished with the use of a binary
tree search algorithm [8].!! Tt is realised in the class BinarySearchTree, which inherits

" The following is extracted from Ref. [9] for a two-dimensional range search example. Consider a random
sequence of signal events e;(z1,2), ¢ = 1,2,..., which are to be stored in a binary tree. The first event in
the sequence becomes by definition the topmost node of the tree. The second event e2(z1,x2) shall have
a larger zi-coordinate than the first event, therefore a new node is created for it and the node is attached
to the first node as the right child (if the zi-coordinate had been smaller, the node would have become
the left child). Event es shall have a larger z;-coordinate than event ey, it therefore should be attached to
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from BinaryTree, and which is also employed to grow decision trees (cf. Sec. 5.7). The
amount of computing time needed to sort N events into the tree is [9] Zfil Iny(7) =
Ing(N!) ~ Nlny N. Finding the events within the tree which lie in a given volume is
done by comparing the bounds of the volume with the coordinates of the events in the
tree. Searching the tree once requires a CPU time that is o< Ing NV, compared to oc N™var
without prior event sorting.

5 The TMVA Classifi ers

All TMVA classifying methods inherit from MethodBase, which implements basic func-
tionality like the interpretation of common configuration options, the interaction with the
training and test data sets, I/O operations and common performance evaluation calculus.
The functionality each classifier is required to implement is defined in the abstract inter-
face IMethod.'? Each classifier must provide a function that creates a rank object (of type
Ranking), which is an ordered list of the input variables prioritized according to criteria
specific to that classifier.

If the option CreateMVAPdfs is set TMVA creates signal and background PDFs from the
corresponding classifier response distributions using the training sample (cf. Sec. 3.1.5).
The binning and smoothing properties of the underlying histograms can be customized via
controls implemented in MethodBase (so that they are common to all classifiers). They
are summarised in in Option Table 1.

The following sections describe the classifiers implemented in TMVA. For each classifier
we proceed according to the following scheme: (7) a brief introduction, (i) the description
of the booking options required to configure the classifier, (iii) a description of the the
classifier and TMVA implementation specifications, (iv) the properties of the variable
ranking, and (v) a few comments on performance, favourable (and disfavoured) use cases,
and comparisons with other classifiers.

5.1 Rectangular cut optimisation

The simplest and most common classifier for selecting signal events from a mixed sample
of signal and background events is the application of an ensemble of rectangular cuts

the right branch below e;. Since e is already placed at that position, now the z2-coordinates of es and
es are compared, and, since es has a larger z, e3 becomes the right child of the node with event e>. The
tree is sequentially filled by taking every event and, while descending the tree, comparing its z1 and x»
coordinates with the events already in place. Whether z1 or z2 are used for the comparison depends on
the level within the tree. On the first level, 21 is used, on the second level z2, on the third again z: and
SO on.

12Two constructors are implemented for each classifier: one that creates the classifier for a first time
for training with a configuration (“option”) string among the arguments, and another that recreates a
classifier from an existing weight file. The use of the first constructor is demonstrated in the example
macro TMVAnalysis.C, while the second one is employed by the Reader in TMVApplication.C. Other
functions implemented by each classifier are: Train (called for training), Write/ReadWeightsToStream (I/O
of specific training results), WriteMonitoringHistosToFile (additional specific information for monitoring
purposes) and CreateRanking (variable ranking).
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Option Values Description
VarTransform None*, Decorrelate, PCA Transformation method for input
variables
False Verbose flag
False Help flag
NbinsMVAPdf 60 Number of bins in histograms used to
build the classifier PDF's
NsmoothMVAP4f 2 Number of smoothing iterations

Option Table 1: Configuration options common to all classifiers (but which can be controlled individually
for each classifier). Values given are defaults. If predefined categories exist, the default category is marked
by a ’¥’. The lower options in the table control the PDF fitting of the classifiers.

on discriminating variables. Unlike all other classifiers in TMVA, the cut classifier only
returns a binary response (signal or background). The optimisation of cuts performed by
TMVA maximises the background rejection at given signal efficiency, and scans over the
full range of the latter quantity. Dedicated analysis optimisation for which, e.g., the signal
significance is maximised requires the expected signal and background yields to be known
before applying the cuts. This is not the case for a multi-purpose discrimination and
hence not used by TMVA. However, the cut ensemble leading to maximum significance
corresponds to a particular working point on the efficiency curve, and can hence be easily
derived after the cut optimisation scan has converged.'3

TMVA implements three methods for cut optimisation: Monte Carlo (MC) sampling, a
Genetic Algorithm (GA), and Simulated Annealing (SA, which is however depreciated for
the present release, since it has not yet been sufficiently validated).'* Attempts to use
MINUIT (Simplex or Migrad) have not shown satisfactory results, with frequently failing
fits because of the non-unique and non-global solution space. For most applications GA
should be the most performing optimisation method.

13 Assuming a large enough number of events so that Gaussian statistics is applicable, the significance for
a signal is given by 8§ = esNs/+/esNs + es(es)Ns, where e5(py and Ng(p) are the signal and background
efficiencies for a cut ensemble and the event yields before applying the cuts, respectively. The background
efficiency ep is expressed as a function of 5 using the TMVA evaluation curve obtained form the test data
sample. The maximum significance is then found at the root of the derivative

ds N 2eB(es)NB + &5 (Ns — —dsga(;S)NB) 0 ©)
— = Ng =Y,
des 2 (esNs +eB (es)NB)s/2

which depends on the problem.

“We note that cut optimisation is not a genuine multivariate analyser method, because no combination
of the variables is achieved. Neither does a cut on one variable depend on the value of another variable
(like it is the case for Decision Trees), nor can a, say, background-like value of one variable in a signal
event be counterweighed by signal-like values of the other variables (like it is the case for the likelihood
method).
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The training events are sorted in binary trees prior to the optimisation, which significantly
reduces the computing time required to determine the number of events passing a given
cut ensemble (cf. Sec. 4.2).

5.1.1 Booking options

The rectangular cut optimisation is booked through the Factory via the command:

factory->BookMethod( Types::kCuts, "Cuts", "<options>" );

Code Example 23: Booking of the cut optimisation classifier: the first argument is a predefined enumerator,
the second argument is a user-defined string identifier, and the third argument is the configuration options
string. See Sec. 3.1.4 for more information on the booking.

The configuration options for the various cut optimisation techniques are given in Option
Table 2.

5.1.2 Description of the classifi er and its implementation

The cut optimisation analysis proceeds by first building binary search trees for signal and
background. For each variable, statistical properties like mean, root-mean-squared (RMS),
variable ranges are computed to guide the search for optimal cuts. Cut optimisation re-
quires an estimator that quantifies the goodness of a given cut ensemble. Maximising
this estimator minimises (maximises) the background efficiency, eg (background rejection,
rg = 1 — ep) for each signal efficiency eg.

All three optimisation methods act on the assumption that one minimum and one max-
imum requirement on each variable is sufficient to optimally discriminate signal from
background (i.e., the signal is clustered). If this is not the case, the variables must be
transformed prior to the cut optimisation to make them compliant with this assumption.

For a given cut ensemble the signal and background efficiencies are derived by counting the
training events that pass the cuts and dividing the numbers found by the original sample
sizes. The resulting efficiencies are therefore rational numbers that may exhibit visible
discontinuities when the number of training events is small and an efficiency is either very
small or very large. Another way to compute efficiencies is to parametrise the probability
density functions of all input variables and to thus achieve continuous efficiencies for any
cut value. Note however that this method expects the input variables to be uncorrelated!
Nonvanishing correlations would lead to incorrect efficiency estimates and hence to under-
performing cuts. The two methods are chosen with the option EffMethod set to EffSel
and EffPDF, respectively.
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A11F (Max, Min,
Smart)

Option Values Description

Method MC, GA, SA Optimisation method

EffMethod EffSel, EffPDF Selection method

MC_NRandCuts 100000 Monte Carlo sample size
MC_Al1lVarProp AllNotEnforced, Variable properties that can be

used to inject prior information on
cut boundaries; this allows to re-
duce the number of sampled cuts

MC_Var[i]Prop (as above) Same as above but per variable

GA_nsteps 30 Stop if the fitness did not increase
by at least GA_convCrit during the
previous GA_nsteps generations

GA_convCrit 0.0001 see GA_nsteps

GA_cycles 3 Number of optimisation cycles

GA_popSize 100 Number of individuals in popula-
tion

GA_SC_steps 10 If an improvement occurred in
GA_SC_rate steps of a period of
the last GA_SC_steps steps, a cut-
variation factor is multiplied by
GA_SC_factor

GA_SC_rate 5 see GA_SC_steps

GA_SC_factor 0.95 see GA_SC_steps

SA_ MaxCalls 5000000 Max. number of minimisation calls

SA_TemperatureGradient 0.7 Temperature gradient

SA_UseAdaptiveTemperature True Use adaptive temperature

SA_InitialTemperature 100000 Initial temperature

SA MinTemperature 500 Minimum temperature

SA_NFunLoops 5 Number of function loops

SA_Eps 1.0e-04 Minimum improvement in previous
step required to continue annealing

SA NEps 4 Number of functions to satisfy

SA Eps

Option Table 2: Configuration options for cut optimisation.
categories exist, the default category is marked by a ’*’.
configured. The prefixes MC (GA, SA) denote options that set properties of the Monte Carlo (Genetic

Values given are defaults.
The options in Option Table 1 can also be

Algorithm, Simulated Annealing) optimisation procedure (selected by the option Method).

If predefined
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Monte Carlo sampling

The simplest and most straightforward, albeit somewhat inefficient method to solve the
optimisation problem is to randomly sample the minimum and maximum requirements for
all discriminating variables. Each sample corresponds to a point in the (eg,75) plane. The
gs dimension is (finely) binned and a cut sample is retained if its 75 value is larger than
the value already contained in that bin. This way a reasonably smooth efficiency curve
can be obtained if the number of input variables is not too large (the required number of
MC samples grows with powers of 2n,;).

Prior information on the variable distributions can be used to reduce the number of cuts
that need to be sampled. For example, if a discriminating variable follows Gaussian
distributions for signal and background, with equal width but a larger mean value for the
background distribution, there is no useful minimum requirement (other than —oo) so that
a single maximum requirement is sufficient for this variable. To instruct TMVA to remove
obsolete requirements, the option MC_Var [i]Prop must be used, where [i] indicates the
counter of the variable (following the order in which they have been registered with the
Factory, beginning with 0) must be set to either FMax or FMin. TMVA is capable of
automatically detecting which of the requirements should be removed. Use the option
MC_Var [i]Prop=FSmart (where again [i] must be replaced by the appropriate variable
counter, beginning with 0). Note that in many realistic use cases the mean values between
signal and background of a variable are indeed distinct, but the background can have large
tails. In such a case, the removal of a requirement is inappropriate, and would lead to
underperforming cuts.

Genetic Algorithm

Genetic Algorithm is a technique to find approximate solutions to optimisation or search
problems. The problem is modeled by a group (population) of abstract representations
(genomes) of possible solutions (individuals). By applying means similar to processes
found in biological evolution the individuals of the population should evolve towards an
optimal solution of the problem. Processes which are usually modeled in evolutionary
algorithms — of which Genetic Algorithms are a subtype — are inheritance, mutation
and “sexual recombination” (also termed crossover).

Apart from the abstract representation of the solution domain, a fitness function must be
defined. Its purpose is the evaluation of the goodness of an individual. The fitness function
is problem dependent. In cut optimisation for instance, the quality of a rectangular cut is
given by good background rejection combined with high signal efficiency. It either returns
a value representing the individual’s goodness or it compares two individuals and indicates
which of them performs better.

The Genetic Algorithm proceeds as follows:

o Initialization: A starting population is created. Its size depends on the problem to be
solved. Each individual belonging to the population is created by randomly setting
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the parameters (cuts) of the abstract representation (variables), thus producing a
point (cut ensemble) in the solution domain of the initial problem.

e Fwaluation: Each individual is evaluated using the fitness function.

e Selection: Individuals are kept or discarded as a function of their fitness. Several
selection procedures are possible. The simplest one is to separate out the worst per-
forming fraction of the population. Another possibility is to decide on the individ-
ual’s survival by assigning probabilities that depend on the individual’s performance
compared to the others.

e Reproduction: The surviving individuals are copied, mutated and crossed-over until
the initial population size is reached again.

o Termination: The evaluation, selection and reproduction steps are repeated until a
maximum number of cycles is reached or an individual satisfies a maximum-fitness
criterion. The best individual is selected and taken as solution to the problem.

The TMVA Genetic Algorithm implementation provides a certain number of controls that
can be set through the options (cf. Table 2). The parameter GA popSize determines the
number of individuals (cut ensembles) which are created at each generation of the Genetic
Algorithm. At the initialization, all parameters of all individuals are chosen randomly.
The individuals are evaluated in terms of their background rejection and signal efficiency.
Each cut ensemble giving an improvement in the background rejection for a specific signal
efficiency bin is immediately stored. Each individual’s fitness is assessed, where the fitness
is largely determined by the difference of the best found background rejection for a partic-
ular bin of signal efficiency and the value produced by the current individual. The same
individual that has at one generation a very good fitness will have only average fitness
at the following generation. This forces the algorithm to focus on the region where the
potential of improvement is the highest.

Individuals with a good fitness are selected to produce the next generation. The new indi-
viduals are created by crossover and mutated afterwards. Mutation changes some values of
some parameters of some individuals randomly following a Gaussian distribution function.
The width of the Gaussian can be altered by the parameter GA_SC_factor. The current
width is multiplied by this factor when within the last GA_SC_steps generations more than
GA_SC_rate improvements have been obtained. If there were GA_SC_rate improvements
the width remains unchanged. Were there, on the other hand, less than GA_SC_rate im-
provements, the width is divided by GA_SC_factor. This allows to influence the speed of
searching through the solution domain.

The cycle of evaluating the fitness of the individuals of a generation and producing a new
generation is repeated until the improvement within the last GA_nsteps has been less than
GA_convCrit in terms of background rejection. The minimisation is then considered to
have converged. The whole cycle from initialization over evaluation of fitness, selection,
reproduction and determining the improvement is repeated GA_cycles times. The Genetic
Algorithm has finished.




5.2 Projective likelihood estimator (PDE approach) 31

Simulated Annealing

As the Genetic Algorithm, Simulated Annealing attempts to solve a minimisation problem
with manifold discrete or continuous, local or global solutions. For example, when slowly
cooling down (“annealing”) a metal its atoms move towards a state of lowest energy,
while for fast annealing the atoms tend to freeze in intermediate higher energy states.
For infinitesimal annealing activity the system will always converge in its global energy
minimum [10].

This physical principle can be simulated to achieve slow, but correct convergence of an
optimisation problem with multiple solutions. Recovery out of local minima is achieved
by assigning the probability [11]

paB) xexp (<57 ). 7)

T
to a perturbation of the parameters (the cuts) leading to a shift AE in the energy of the
system. The probability of such perturbations to occur decreases with the size of a positive
energy coefficient of the perturbation, and with the ambient temperature (7'). The TMVA
implementation of Simulated Annealing uses adaptive adjustment of the perturbation and
temperature gradients.

Although the Simulated Annealing algorithm is technically functional, it has not yet been
optimised so that its use is depreciated until further notice.

5.1.3 Ranking

The present implementation of Cuts does not provide a ranking of the input variables.

5.1.4 Performance

The Genetic Algorithm currently provides the best cut optimisation convergence. How-
ever, it is found that with rising number of discriminating input variables the goodness of
the solution found (and hence the smoothness of the background-rejections versus signal
efficiency plot) deteriorates quickly. Rectangular cut optimisation should therefore be re-
duced to the variables that have the largest discriminating power.

If variables with excellent signal from background separation exist, applying cuts can be
quite competitive with more involved classifiers. Cuts are known to underperform in pres-
ence of strong non-linear correlations and/or if several weakly discriminating variables
are used. In the latter case, a true multivariate combination of the information will be
rewarding.

5.2 Projective likelihood estimator (PDE approach)

The method of maximum likelihood consists of building a model out of probability density
functions (PDFs) that reproduces the input variables for signal and background. For a
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given event, the likelihood for being of signal type is obtained by multiplying the signal
probability densities of all input variables, and normalising this by the sum of the signal
and background likelihoods. Correlations among the variables are ignored.

5.2.1 Booking options

The likelihood classifier is booked via the command:

factory->BookMethod( Types: :kLikelihood, "Likelihood", "<options>" );

Code Example 24: Booking of the (projective) likelihood classifier: the first argument is the predefined
enumerator, the second argument is a user-defined string identifier, and the third argument is the config-
uration options string. See Sec. 3.1.4 for more information on the booking.

The likelihood configuration options are given in Option Table 3.

Option Values Description

Spline 0, 1, 2%, 3, 5 Degree of splines used to interpolate
the reference histograms

NSmooth 5 Number of smoothing iterations for
the input histograms

NAvEvtPerBin 25 Average number of events per bin in
each reference histogram (to allow an
adaptive number of bins)

UseKDE False Use kernel density estimator (KDE)
instead of spline functions

KDEtype Gauss* KDE kernel type (currently only
Gauss)

KDEiter Nonadaptive*, Adaptive Nonadaptive or adaptive number of
iterations (see text)

KDEFineFactor 1 Finetuning factor for the adaptive
KDE

KDEborder None*, Renorm, Mirror Method for correcting bound-

ary/border effects

TransformOutput  False Transform likelihood output by in-
verse sigmoid function

Option Table 3: Likelihood configuration options. Values given are defaults. If predefined categories exist,
the default category is marked by a ’#’. The options in Option Table 1 can also be configured.
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5.2.2 Description of the classifi er and its implementation

The likelihood ratio y. (i) for event i is defined by

L Ls(i)
yc(i) = L@ + Lp0) (8)
where .
Lgp (i) = HPS(B),k(xk(i))a (9)
k=1

and where pg(p) is the signal (background) PDF for the kth input variable zy. The

PDF's are normalised
+0o0

/pS(B),k(wk)dlvk =1, Vk. (10)

— 00

It can be shown that in absence of model inaccuracies (such as correlations between input
variables not removed by the decorrelation procedure, or an inaccurate probability density
model), the ratio (8) provides optimal signal from background separation for the given set
of input variables.

Since the parametric form of the PDFs is generally unknown, the PDF shapes are em-
pirically approximated from the training data by nonparametric functions, which can be
polynomial splines of various degrees fitted to histograms or unbinned kernel density esti-
mators (KDE), as discussed below.

A certain number of primary validations are performed during the PDF creation, the re-
sults of which are printed to standard output. Among these are the computation of a x?
estimator between all nonzero bins of the original histogram and its PDF, and a compar-
ison of the number of outliers (in sigmas) found in the original histogram with respect to
the (smoothed) PDF shape, with the statistically expected one. The fidelity of the PDF
estimate can be also inspected visually by executing the macro likelihoodrefs.C (cf.
Table 1).

Nonparametric PDF parameterisation using spline functions

Polynomial splines are fitted to binned histograms according to the following procedure.

1. For each input variable, a histogram is filled with the training data. The upper and
lower bounds of the histogram coincide with the limits found in the data (or they
are equal to [0,1] if the input variables are normalised). The (equidistant) binning
is chosen so that the average number of entries per bin corresponds to the number
(NAvEvtPerBin) defined in the option string.

2. The histogram is smoothed NSmooth times using the method TH1: : SmoothArray(.),
which is an implementation of the algorithm 353QH twice [12]. The appropri-
ate number of smoothing iterations depends on the shape of the histogram. Since
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smoothing tends to even out all structures from the histogram, narrow structures
(e.g., peaks) support less smoothing than broad ones.

3. The smoothed histogram is used to construct an object of the class PDF, where
it is cloned and the bins are fit to polynomial interpolation functions, (splines —
derivatives of the ROOT class TSpline). The available splines are: degree 0 (the
original histogram is kept), which is useful for discrete variables; degree 1 (linear),
2 (quadratic), 3 (cubic) and degree 5. Splines of degree two or above render the
PDF continuous and differentiable in all points excluding the interval borders, which
in turn ensures the same property for the likelihood ratio (8). Since cubic (and
higher) splines equalize the first and second derivatives at the spline transitions, the
resulting curves, although mathematically smooth, can wiggle in quite unexpected
ways. Furthermore, there is no local control of the spline: moving one control point
(bin) causes the entire curve to change, not just the part near the control point. To
ensure a safe interpolation, quadratic splines are used by default.

4. To speed up the numerical access to the probability densities, the spline functions are
stored into a finely binned (10* bins) histogram, where adjacent bins are interpolated
by a linear function. Only after this step, the PDF is normalised according to (10).

Nonparametric PDF parameterisation using kernel density estimators

Another type of nonparametric approximation of the PDFs is achieved with kernel density
estimators (KDE). As opposed to splines KDEs are obtained from unbinned data. The
idea of the approach is to estimate the shape of a PDF by the sum over smeared training
events. One then finds for a PDF p(z) of a variable z [13]

po) = 5 DK (T5) = 5 o Kle -, ()

where N is the number of training events, Kp(t) = K(t/h)/h is the kernel function, and
h is the bandwidth of the kernel (also termed the smoothing parameter). Currently, only
a Gaussian form of K is implemented, where the exact form of the kernel function is of

minor relevance for the quality of the shape estimation. More important is the choice of
the bandwidth.

The KDE smoothing can be applied in either nonadaptive (NA) or adaptive form (A),
the choice of which is controlled by the option KDEiter. In the nonadaptive case the
bandwidth hxya is kept constant for the entire training sample. As optimal bandwidth can
be taken the one that minimizes the asymptotic mean integrated square error (AMISE).
For the case of a Gaussian kernel function this leads to [13]

1/5
ha = (%) o, N5, (12)

where o,, is the RMS of the variable x.
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The so called sample point adaptive method uses as input the result of the nonadaptive
KDE, but also takes into account the local event density. The adaptive bandwidth hp
then becomes a function of p(z) [13]

ha(z) = . (13)

The adaptive approach improves the shape estimation in regions with low event density.
On the contrary, in regions with high event density it can give rise to “over-smoothing”
of fine structures such as narrow peaks. The degree of smoothing can be tuned by multi-
plying the bandwidth ha(z) with the user-specified factor KDEFineFactor.

For practical reasons, the KDE implementation in TMVA differs somewhat form the pro-
cedure described above. Instead of using the unbinned training data, finely-binned his-
tograms are used as inputs, which allows to speed up the algorithm. In a second step, a
KDEKernel class object is created where the calculation of the bandwidth hya is performed.
If the algorithm is run in the adaptive mode the nonadaptive step is also performed and
the output is used to compute ha(z) for the adaptive part. In a third step, a smoothed
histogram estimating the PDF shape is filled by looping over the binned input histogram
and summing up the kernel functions. Here hxa is used for the nonadaptive mode and
ha(x) for the adaptive mode. Finally, the smoothed histogram is used to construct a PDF
class object.

Both the nonadaptive and the adaptive methods can suffer from the so-called boundary
problem. It occurs for instance if the original distribution is nonzero below a physical
boundary value and zero above. This property cannot be reproduced by the KDE proce-
dure. In general, the stronger the discontinuity the more acute is the boundary problem.
TMVA provides three options under the term KDEborder that allow to treat boundary
problems.

e KDEborder=None

No boundary treatment is performed. The consequence is that close to the boundary
the KDE result will be inaccurate: below the boundary it will underestimate the PDF
while it will not drop to zero above. In TMVA the PDF resulting from KDE is in fact
a (finely-binned) histogram, with bounds equal to the minimum and the maximum
values of the original distribution. Hence, the boundary value will be at the edge of
the PDF (histogram), and a drop of the PDF due to the closeness of the boundary
can be observed (while the artificial enhancement beyond the boundary will fall
outside of the histogram). In other words, for training events that are close to the
boundary some fraction of the probability “flows” outside the histogram (probability
leakage). As a consequence, the integral of the kernel function inside the histogram
borders is smaller than one.

e KDEborder=Renorm
The probability leakage is compensated by renormalising of the kernel function so
that the integral inside the histogram borders is equal to one.
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Figure 8: Transformation (14) of the likelihood output.

e KDEborder=Mirror
The original distribution is “mirrored” around the boundary. To the events originat-
ing from this mirror copy the same procedure is applied as for the original ones: each
of them is smeared by a kernel function and its contribution inside the histogram
(PDF) boundaries is added to the PDF. The mirror copy exactly compensates the
probability leakage.

Transforming the likelihood output

If a data-mining problem offers a large number of input variables, or variables with excel-
lent separation power, the likelihood response y is often strongly peaked at 0 (background)
and 1 (signal). Such a response is inconvenient for the use in subsequent analysis steps.
TMVA therefore allows to transform the likelihood output by an inverse sigmoid function
that zooms into the peaks

ye(i) — yr(i) = 7' In(yz' - 1) , (14)
where 7 = 15 is used (hardcoded). Note that 3/ (%) is no longer contained within [0, 1] (see
Fig. 8). The transformation (14) is enabled (disabled) with the likelihood booking option
TransformQutput=True (False).

5.2.3 Ranking

The present likelihood implementation does not provide a ranking of the input variables.

5.2.4 Performance

Both the training and the application of the likelihood classifier are very fast operations
that are suitable for large data sets.

The performance of the classifier relies on the accuracy of the likelihood model. Because
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high fidelity PDF estimates are mandatory, sufficient training statistics is required to
populate the tails of the distributions. The neglect of correlations between input variables
in the model (9), often leads to a diminution of the discrimination performance. While
linear Gaussian correlations can be rotated away (see Sec. 4.1), such an ideal situation is
rarely given. Positive correlations lead to peaks at both y; — 0,1. Correlations can be
reduced by categorizing the data samples and building an independent likelihood classifier
for each event category. Such categories could be geometrical regions in the detector,
kinematic properties, etc. In spite of this, realistic applications with a large number of
input variables are often plagued by irreducible correlations, so that projective likelihood
approaches like the one discussed here are underperforming. This finding lead to the
development of the many alternative classifiers that exist in statistical theory today.

5.3 Multidimensional likelihood estimator (PDE range-search approach)

This is a generalization of the projective likelihood classifier described in Sec. 5.2 t0 7y,
dimensions, where ny,, is the number of input variables used. If the multidimensional PDF
for signal and background were known, this classifier would exploit the full information
contained in the input variables, and would hence be optimal. In practice however, huge
training samples are necessary to sufficiently populate the multidimensional phase space.'®
Kernel estimation methods may be used to approximate the shape of the PDF for finite
training statistics.

A simple probability density estimator denoted PDFE range search, or PDERS, has been
suggested in Ref. [9]. The PDE for a given test event (discriminant) is obtained by counting
the (normalised) number of signal and background (training) events that occur in the
?vicinity” of the test event. The classification of the test event may then be conducted on
the basis of the majority of the nearest training events. The ny,r-dimensional volume that
encloses the ”vicinity” is user-defined and can be adaptive. A search method based on
sorted binary trees is used to reduce the computing time for the range search. To enhance
the sensitivity within the volume, kernel functions are used to weight the reference events
according to their distance from the test event. PDERS is a variant of a K nearest
neighbour algorithm.

5.3.1 Booking options
The PDERS classifier is booked via the command:

factory->BookMethod( Types::kPDERS, "PDERS", "<options>" );

Code Example 25: Booking of PDERS: the first argument is a predefined enumerator, the second argument
is a user-defined string identifier, and the third argument is the configuration options string. See Sec. 3.1.4
for more information on the booking.

YDue to correlations between the input variables, only a sub-space of the full phase space may be
populated.
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The configuration options for the PDERS classifier are given in Option Table 4.

Option Values Description
VolumeRangeMode Unscaled, RMS, MinMax, Definition of the volume reference
Adaptivex
DeltaFrac 3.0 Volume size: multiplies MinMax or
RMS
NEventsMin 100 Minimum number of events required

in adaptive volume

NEventsMax 200 Maximum number of events required
in adaptive volume

MaxVIterations 50 Maximum number of iterations for
the adaptive volume search

InitialScale 0.99 Initial size of adaptive volume (com-
pared to full volume spanned by data)

KernelEstimator Box*, Sphere, Teepee, Kernel estimator function
Gauss, Sinc3(5,7,9,11),
Lanczos2(3,5,8)

GaussSigma 0.2 Width (with respect to volume size)
of Gaussian kernel estimator

Option Table 4: PDERS configuration options. Values given are defaults. If predefined categories exist,
the default category is marked by a ’#’. The options in Option Table 1 can also be configured.

5.3.2 Description of the classifi er and its implementation

To classify an event as being either of signal or of background type, a local estimate of the
probability density of it belonging to either class is computed. The method of PDERS
provides such an estimate by defining a volume (V') around the test event (i), and by
counting the number of signal (ng(%,V)) and background events (ng (i, V)) obtained from
the training sample in that volume. The ratio

. 1
yeoERs(, V) = 70— (15)

1473, V)
is taken as the estimate, where r(i,V) = (ng(i,V)/Ng) - (Ns/ns(i,V)), and Ng(p) is
the total number of signal (background) events in the training sample. The estimator
yppERS (4, V) peaks at 1 (0) for signal (background) events. The counting method averages
over the PDF within V', and hence ignores the available shape information inside (and
outside) that volume.
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Binary tree search

Efficiently searching for and counting the events that lie inside the volume is accomplished
with the use of a ny,r-variable binary tree search algorithm [8] (cf. Sec. 4.2).

Choosing a volume

The TMVA implementation of PDERS optionally provides four different volume defini-
tions:

e Unscaled
The simplest volume definition. The user specifies a rigid box of size DeltaFrac in

units of the variables. This method was the one originally used by the developers of
PDERS [9].

e MinMax
The volume is defined in each dimension (i.e., input variable) with respect to the
full range of values found for that dimension in the training sample. The fraction of
this volume used for the range search is defined by the option DeltaFrac.

e RMS
The volume is defined in each dimension with respect to the RMS of that dimension
(input variable), estimated from the training sample. The fraction of this volume
used for the range search is defined by the option DeltaFrac.

e Adaptive

A volume is defined in each dimension with respect to the RMS of that dimension,
estimated from the training sample. The overall scale of the volume is adjusted
individually for each test event such that the total number of events confined in the
volume lies within a user-defined range (options NEventsMin/Max). The adjustment
is performed by the class RootFinder, which is a C++ implementation of Brent’s
algorithm (translated from the CERNLIB function RZERO). The maximum initial
volume (fraction of the RMS) and the maximum number of iterations for the root
finding is set by the options InitialScale and MaxVIterations, respectively. The
requirement to collect a certain number of events in the volume automatically leads to
small volume sizes in strongly populated phase space regions, and enlarged volumes
in areas where the population is scarce.

Although the adaptive volume adjustment is more flexible and should perform better, it
significantly increases the computing time of the PDERS discriminant. If found too slow,
one can reduce the number of necessary iterations by choosing a larger NEventsMin/Max
interval.

Event weighting with kernel functions

One of the shortcomings of the original PDERS implementation is its sensitivity to the
exact location of the sampling volume boundaries: an infinitesimal change in the bound-
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ary placement can include or exclude a training event, thus changing r(i, V') by a finite
amount.'® In addition, the shape information within the volume is ignored.

Kernel functions mitigate these problems by weighting each event within the volume as a
function of its distance to the test event. The farer it is away, the smaller is its weight.
The following kernel functions are implemented in TMVA, and can be selected with the
option KernelEstimator.

e Box
Corresponds to the original rectangular volume element without application of event
weights.

e Sphere
A hyperelliptic volume element is used without application of event weights. The
hyperellipsoid corresponds to a sphere of constant fraction in the MinMax or RMS
metrics. The size of the sphere can be chosen adaptive, just as for the rectangular
volume.

e Teepee
The simplest linear interpolation that eliminates the discontinuity problem of the
box. The training events are given a weight that decreases linearly with their distance
from the centre of the volume (the position of the test event). In other words: these
events are convolved with the triangle or tent function, becoming a sort of teepee in
multidimensions.

e Gauss
The simplest well behaved convolution kernel. The width of the Gaussian (fraction
of the volume size) can be set by the option GaussSigma.

Other methods implemented for test purposes are “Sinc” and ”Lanczos” functions o
sinz/z of different (symmetric) orders. They exhibit strong peaks at zero and oscillating
tails. The Gaussian and Teepee kernel functions are shown in Fig. 9.

5.3.3 Ranking

The present implementation of Likelihood does not provide a ranking of the input variables.

5.3.4 Performance

As opposed to many of the more sophisticated data-mining approaches, which tend to
present the user with a ”black box”, PDERS is simple enough that the algorithm can
be easily traced and tuned by hand. PDERS can yield competitive performance if the
number of input variables is not to large and the statistics of the training sample is
ample. In particular, it naturally deals with complex nonlinear variable correlations, the

16Such an introduction of artefacts by having sharp boundaries in the sampled space is an example of
Gibbs’s phenomenon, and is commonly referred to as ringing or aliasing.
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Figure 9: Kernel functions (left: Gaussian, right: Teepee) used to weight the events that are found inside
the reference volume of a test event.

reproduction of which may, for example, require involved neural network architectures.

PDERS is a slowly responding classifier. Only the training, i.e., the fabrication of the
binary tree is fast, which is usually not the critical part. The necessity to store the entire
binary tree in memory to avoid accessing virtual memory limits the number of training
events that can effectively be used to model the multidimensional PDF. This is not the
case for the other classifiers implemented in TMVA (with some exception for Boosted
Decision Trees).

5.4 H-Matrix (x?) estimator

The origins of the H-Matrix approach dates back to works of Fisher and Mahalanobis in
the context of Gaussian classifiers [14, 15]. It discriminates one class (signal) of a feature
vector from another (background). The correlated elements of the vector are assumed
to be Gaussian distributed, and the inverse of the covariance matrix is the H-Matriz. A
multivariate x? estimator is built that exploits differences in the mean values of the vector
elements between the two classes for the purpose of discrimination.

The H-Matrix classifier as it is implemented in TMVA is equal or less performing than
the Fisher discriminant (see Sec. 5.5), and has been only included for completeness.

5.4.1 Booking options

The H-Matrix discriminant is booked via the command:

factory->BookMethod( Types::kHMatrix, "HMatrix", "<options>" );

Code Example 26: Booking of the H-Matrix classifier: the first argument is a predefined enumerator, the
second argument is a user-defined string identifier, and the third argument is the configuration options
string. See Sec. 3.1.4 for more information on the booking.
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No configuration options in addition to those described in Option Table 1 are implemented
for the H-Matrix classifier.

5.4.2 Description of the classifi er and its implementation

For an event 4, each one x? estimator (X%( B)) is computed for signal (S) and background
(B), using estimates for the sample means (Zg(p)x) and covariance matrices (Cg(p)) ob-
tained from the training data

Nvar

Xt (@) = (wr(i) — Tug) Cp gy (me(i) — Tue) (16)
k=1

where U = S, B. From this, the discriminant
2 (; 2 (7
: xg(i) — x5(%)
ym (i) = : =, (17)
XB (7') + X%’(Z)

is computed to discriminate between the signal and background classes.

5.4.3 Ranking

The present implementation of the H-Matrix discriminant does not provide a ranking of
the input variables.

5.4.4 Performance

The TMVA implementation of the H-Matrix classifier has been shown to underperform in
comparison with the corresponding Fisher discriminant (cf. Sec. 5.5), when using similar
assumptions and complexity. It is therefore depreciated.

5.5 Fisher discriminants (linear discriminant analysis)

In the method of Fisher discriminants [14] event selection is performed in a transformed
variable space with zero linear correlations, by distinguishing the mean values of the signal
and background distributions. The linear discriminant analysis determines an axis in the
(correlated) hyperspace of the input variables such that, when projecting the output classes
(signal and background) upon this axis, they are pushed as far as possible away from each
other, while events of a same class are confined in a close vicinity. The linearity property
of this classifier is reflected in the metric with which ”far apart” and ”close vicinity” are
determined: the covariance matrix of the discriminating variable space.

5.5.1 Booking options

The Fisher discriminant is booked via the command:
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factory->BookMethod( Types::kFisher, "Fisher", "<options>" );

Code Example 27: Booking of the Fisher discriminant: the first argument is a predefined enumerator, the
second argument is a user-defined string identifier, and the third argument is the configuration options
string. See Sec. 3.1.4 for more information on the booking.

The configuration options for the Fisher discriminant are given in Option Table 5.

Option Values Description

Method Fisher*, Mahalanobis Variations of Fisher discriminants

Option Table 5: Configuration options for the Fisher discriminant. Values given are defaults. If predefined
categories exist, the default category is marked by a ’*’. The options in Option Table 1 can also be
configured.

5.5.2 Description of the classifi er and its implementation

The classification of the events in signal and background classes relies on the following
characteristics: the overall sample means 7, for each input variable £k = 1,..., nyay, the
class-specific sample means Zg(p)x, and total covariance matrix C' of the sample. The
covariance matrix can be decomposed into the sum of a within- (W) and a between-class
matriz (B). They respectively describe the dispersion of events relative to the means of
their own class (within-class matrix), and relative to the overall sample means (between-
class matrix)!7.

The Fisher coefficients, Fy,, are then given by

/ Nvar
N5+N ZWM .’Egg LIIBZ) (18)

"The within-class matrix is given by

Whie = Z {xue —ZTuk){zv,e —Tue) = Cs,pe + CB ke
U=S,B

where Cg(p) is the covariance matrix of the signal (background) sample. The between-class matrix is
obtained by

1 _ — N\ = _

By, = 3 Z Zuk —Zk) (@u,e — Te)
U=S,B

where Tg(p),, is the average of variable x for the signal (background) sample, and Z denotes the average

for the entire sample.
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where Ng(p) are the number of signal (background) events in the training sample. The
Fisher discriminant yg;(i) for event i is given by

Nvar

yri(i) = Fo+ Y Fra(i) . (19)
k=1

The offset Fyy centers the sample mean gp; of all Ng + Np events at zero.

Instead of using the within-class matrix, the Mahalanobis variant determines the Fisher
coefficients as follows [15]

\/7 Nvar
B = Ni N, Z Coit Tse—Tpy) , (20)

where Cyy = Wyp + Bgg.

5.5.3 Ranking

The Fisher discriminant analysis aims at simultaneously maximising the between-class
separation while minimising the within-class dispersion. A useful measure of the discrim-
ination power of a variable is therefore given by the diagonal quantity By /Ck, which is
used for the ranking of the input variables.

5.5.4 Performance

In spite of the simplicity of the classifier, Fisher discriminants can be competitive with
likelihood and non-linear discriminants in certain cases. In particular, Fisher discriminants
are optimal for Gaussian distributed variables with linear correlations (cf. the standard
toy example that comes with TMVA).

On the other hand, no discrimination at all is achieved when a variable has the same
sample mean for signal and background, even if the shapes of the distributions are very
different. Thus, Fisher discriminants often benefit from suitable transformations of the
input variables. For example, if a variable z € [—1,1] has a a signal distributions of the
form z2, and a uniform background distributions, their mean value is zero in both cases,
leading to no separation. The simple transformation z — |z| renders this variable powerful
for the use in a Fisher discriminant.

5.6 Artifi cial Neural Networks (non-linear discriminants)

An Artificial Neural Network (ANN) is most generally speaking any simulated collection
of interconnected neurons, with each neuron producing a certain response at a given set
of input signals. By applying an external signal to some (input) neurons the network
is put into a defined state that can be measured from the response of one or several
(output) neurons. One can therefore view the neural network as a mapping from a space
of input variables z1, ..., z, . onto a, in case of a signal-versus-background discrimination
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problem, one-dimensional space of output variables y. The mapping is non-linear if at least
one neuron has a non-linear response to its input.

In TMVA three neural network implementations are available to the user. The first was
adapted from a FORTRAN code developed at the Université Blaise Pascal in Clermont-
Ferrand,'® the second is the ANN implementation that comes with ROOT. The third is a
newly developed neural network (denoted MLP) that is faster and more flexible than the
other two and is the recommended neural network to use with TMVA. All three neural
networks are feed-forward multilayer perceptrons.

5.6.1 Booking options
The Clermont-Ferrand neural network

The Clermont-Ferrand neural network is booked via the command:

factory->BookMethod( Types: :kCFM1pANN, "CF_ANN", "<options>" );

Code Example 28: Booking of the Clermont-Ferrand neural network: the first argument is a predefined
enumerator, the second argument is a user-defined string identifier, and the third argument is the options
string. See Sec. 3.1.4 for more information on the booking.

The configuration options for the Clermont-Ferrand neural net are given in Option Table 6.

Option Values Description

NCycles 3000 Number of training cycles

HiddenlLayers "N-1,N-2,..." Specification of the network architec-
ture

Option Table 6: Configuration options for the Clermont-Ferrand neural net. Values given are defaults. See
Sec. 5.6.3 for a description of the network architecture configuration. The options in Option Table 1 can
also be configured.

The ROOT neural network (class TMultiLayerPerceptron)

This neural network interfaces the ROOT class TMultilayerPerceptron and is booked
through the Factory via the command line:

!8The original Clermont-Ferrand neural network has been used for Higgs search analyses in ALEPH,
and background fighting in rare B-decay searches by the BABAR Collaboration. For the use in TMVA
the FORTRAN code has been converted to C++.
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factory->BookMethod( Types::kTM1pANN, "TMlp_ANN", "<options>" );

Code Example 29: Booking of the ROOT neural network: the first argument is a predefined enumerator,
the second argument is a user-defined string identifier, and the third argument is the configuration options
string. See Sec. 3.1.4 for more information on the booking.

The configuration options for the ROOT neural net are given in Option Table 7.

Option Values Description

NCycles 3000 Number of training cycles

HiddenLayers "N-1,N-2,..." Specification of the network architec-
ture

Option Table 7: Configuration options for the ROOT neural network. Values given are defaults. See
Sec. 5.6.3 for a description of the network architecture configuration. The options in Option Table 1 can
also be configured.

The MLP neural network

The MLP neural network is booked through the Factory via the command line:

factory->BookMethod( Types::kMLP, "MLP_ANN", "<options>" );

Code Example 30: Booking of the MLP neural network: the first argument is a predefined enumerator,
the second argument is a user-defined string identifier, and the third argument is the options string. See
Sec. 3.1.4 for more information on the booking.

The configuration options for the MLP neural net are given in Option Table 8.
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Option Values Description

NCycles 3000 Number of training cycles

HiddenLayers "N-1,N-2,..." Specification of the network architec-
ture

Normalise True Normalised input variables flag

NeuronType sigmoid*, linear, tanh, Neuron activation function

radial

NeuronInputType  sum, sqsum, abssum Neuron input norm (synapsis func-

tion)

Option Table 8: Configuration options for the MLP neural network. Values given are defaults. If predefined
categories exist, the default category is marked by a ’#’. See Sec. 5.6.3 for a description of the network
architecture configuration. The options in Option Table 1 can also be configured.

5.6.2 Description of the classifi ers and their implementation

The behaviour of an artificial neural network is determined by the layout of the neurons,
the weights of the inter-neuron connections, and by the response of the neurons to the
input, described by neuron response function p.

Multilayer Perceptron

While in principle a neural network with n neurons can have n? directional connections,
the complexity can be reduced by organizing the neurons in layers and only allowing
directional connections from one layer to the immediate next one (see Fig. 10). This
kind of neural network is termed multilayer perceptron; all neural net implementations in
TMVA are of this type. The first layer of a multilayer perceptron is the input layer, the
last one the output layer, and all others are hidden layers. For a classification problem
with ny,r input variables and 2 output classes the input layer consists of 7y, neurons that
hold the input values, z1,...,Zy,,,, and one neuron in the output layer that holds the
output variable, the neural net estimator yANN.lg Each directional connection between
the output of one neuron and the input of another has an associated weight. The value
of the output neuron is multiplied with the weight to be used as input value for the next
neuron.

Neuron response function

The neuron response function p maps the neuron input 41, ...,%, onto the neuron output
(Fig. 11). Often it can be separated into a R™ — R synapsis function k, and a R — R
neuron activation function a, so that p = a o k. The functions x and « can have the

191 two output neurons were used in the output layer, one for signal and the other for background, their
output values would be yann and 1 — yann, respectively.
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Input Layer Hidden Layer Output Layer

Figure 10: Multilayer perceptron with one hidden layer.
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5.6.3 Network architecture

The number of hidden layers in a network and the number of neurons in these layers are
configurable via the option HiddenLayers. For example the configuration "HiddenLayers=
N-1,N+10:3" creates a network with three hidden layers, the first hidden layer with 7,y —1
neurons, the second with 7, + 10 neurons, and the third with 3 neurons.

When building a network two rules should be kept in mind. The first is the theorem by
Weierstrass ascertaining that for a multilayer perceptron a single hidden layer is sufficient
to approximate a given continuous correlation function to any precision, given an arbitrary
large number of neurons in the hidden layer. If the available computing power and the
size of the training data sample are sufficient, one can thus raise the number of neurons
in the hidden layer until the optimal performance is reached.

It is possible that the same performance can be reached with a network with more than
one hidden layer and a potentially much smaller total number of hidden neurons. This
would lead to a shorter training time and a more robust network.

Training of the neural network

The most common algorithm for adjusting the weights that optimise the classification
performance of a neural network is the so-called back propagation. It belongs to the family
of supervised learning methods, where the desired output for every input event is known.
Back propagation is used by all neural networks in TMVA. The output of a network (here
for simplicity assumed to have a single hidden layer with a Tanh activation function, and
a linear activation function in the output layer) is given by

Nh Tih Nvar
YANN = Z y](?)wﬁ) = Ztanh (Z 3:sz(31)> . wﬁ) , (23)
j=1 j=1 i=1

where ny,; and ny are the number of neurons in the input layer and in the hidden layer,

respectively, ngl-)
and wﬁ) is the weight between the hidden-layer neuron j and the output neuron. Simple

summation was used in Eq. (23) as synapsis function .

is the weight between input-layer neuron ¢ and hidden-layer neuron j,

During the learning process the network is supplied with N training event tuples x, =
(1, Tnya)a, @ = 1,..., N. For each training event a the neural network output yann,q
is computed and compared to the desired output g, € {1,0} (1 for signal events and 0
for background events). An error function E, measuring the agreement of the network
response with the desired one, is defined by

(yANN,a - ?)a)Q s (24)

N —

N N
B(x1,...,xn|W) =) Ba(xe|lw) =)
a=1

a=1

where w denotes the ensemble of adjustable weights in the network. The set of weights
that minimizes the error function can be found using the method of steepest or gradient
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descent, provided that the neuron response function is differentiable with respect to the
input weights. Starting from a random set of weights w(?) the weights are updated by
moving a small distance in w-space into the direction —VFE where E decreases most
rapidly

wetl) = wl) _ pV L B, (25)

where the positive number 7 is the learning rate.

The weights connected with the output layer are updated by

aE al )
=Y (yaxNa — fa) y;i ; (26)
a=1 8 a=1

and the weights connected with the hidden layers are updated by

N

o] —n Y (YaNN.a — Ja) yJ(Qa) (1- yJ(QCZ)wﬁ) Tia s (27)
a=1 a=1

8E

where we have used tanh’ z = tanh z(1 — tanh ). This method of training the network is
denoted bulk learning, since the sum of errors of all training events is used to update the
weights. An alternative choice is the so-called online learning, where the update of the
weights occurs at each event. The weight updates are obtained from Egs. (26) and (27)
by removing the event summations. In this case it is important to use a well randomized
training sample. Online learning is the learning method implemented in TMVA.

5.6.4 Ranking

The MLP neural network implements a variable ranking based on the sum of the weights-
squared of the connections that leave the variable input neuron. The importance I; of the
input variable 7 is given by

Mh

I =7 Z( ) i=1,. .. Tyar, (28)

where 7; is the sample mean of input variable 3.

5.6.5 Performance

In the tests we have carried out so far, the MLP and ROOT networks performed equally
well, with however a clear speed advantage for the MLP. The Clermont-Ferrand neural
net exhibited worse classification performance in these tests, which is partly due to the
slow convergence of its training (at least 10k training cycles are required to achieve ap-
proximately competitive results).




5.7 Boosted Decision Trees 51

Figure 12: Schematic view of a decision tree. Starting from the root node, a sequence of binary splits
using the discriminating variables z; is performed. Each split uses the variable that at this node gives the
best separation between signal and background when being cut on. The same variable may thus be used
at several nodes, while others might not be used at all. The leaf nodes at the bottom end of the tree are
labeled “S” for signal and “B” for background depending on the majority of events that end up in the
respective nodes.

5.7 Boosted Decision Trees

A decision tree is a binary tree structured classifier like the one sketched in Fig. 12.
Repeated left/right (yes/no) decisions are performed on a single variable at a time until
some stop criterion is reached. Like this the phase space is split into regions that are
eventually classified as signal or background, depending on the majority of training events
that end up in the final leaf nodes. The boosting of a decision tree (BDT) represents an
extension to a single decision tree. Several decision trees (a forest), derived from the same
training sample by reweighting events, are combined to form a classifier which is given by a
(weighted) majority vote of the individual decision trees. Boosting stabilizes the response
of the decision trees with respect to fluctuations in the training sample.

5.7.1 Booking options

The BDT classifier is booked via the command:




5.7 Boosted Decision Trees 52

factory->BookMethod( Types::kBDT, "BDT", '"<options>" );

Code Example 31: Booking of the BDT classifier: the first argument is a predefined enumerator, the
second argument is a user-defined string identifier, and the third argument is the configuration options
string. See Sec. 3.1.4 for more information on the booking.

Several configuration options are available to customize the BDT classifier. They are
summarized in Option Table 9 and explained in more detail in Sec. 5.7.2.

Option Values Description
nTrees 200 Number of trees in the forest
BoostType AdaBoost*, Bagging Boosting type for successive tree
building
SeparationType GiniIndexx*, Separation criterion applied for the
MisClassificationError, node splitting
CrossEntropy,
SDivSqrtSPlusB
nEventsMin: 10 Minimum number of events in a node

where further splitting is stopped

nCuts: 20 Number of steps in the scan to opti-
mise the cut at a node

UseYesNoLeaf True Use simple Yes/No decision from leaf
node or (if Falsex) use the train-
ing leaf purity as a signal /background
weight

UseWeightedTrees True Use a weighted (e.g., In(boost-weight)
from AdaBoost) or unweighted ma-
jority vote of all trees in the forest

PruneMethod CostComplexityx, Pruning method
ExpectedError
PruneStrength 5 A parameter to adjust the amount of

pruning. It should be large enough
such that overtraining is avoided and
needs to be tuned for each analysis
individually. If it is set to a nega-
tive value, an algorithm searches for
the optimal prune strength (not nec-
essarily reliable)

Option Table 9: Configuration options for the BDT classifier. Values given are defaults. If predefined
categories exist, the default category is marked by a ’*’. The common options in Option Table 1 can also
be configured.




5.7 Boosted Decision Trees 53

5.7.2 Description of the classifi er and its implementation

Decision trees are well known classifiers that allow straightforward interpretation as they
can be visualized by a simple two dimensional tree structure. They are in this respect
similar to rectangular cuts. However, whereas a cut-based analysis is able to select only
one hypercube as region of phase space, the decision tree is able to split the phase space
into a large number of hypercubes, each of which is identified as either “signal-like” or
“background-like”. The path down the tree to each leaf node represents an individual cut
sequence that selects signal or background depending on the type of the leaf node.

A shortcoming of decision trees is their instability with respect to statistical fluctuations
in the training sample from which the tree structure is derived. For example, if two input
variables exhibit similar separation power, a fluctuation in the training sample may cause
the tree growing algorithm to decide to split on one variable, while the other variable
could have been selected without that fluctuation. In such a case the whole tree structure
is altered below this node, possibly resulting also in a substantially different classifier
response.

This problem is overcome by constructing a forest of decision trees and classifying an
event on a majority vote of the classifications done by each tree in the forest. All trees in
the forest are derived from the same training sample, with the events being subsequently
subjected to so-called boosting, a procedure which modifies their weights in the sample.
Boosting increases the statistical stability of the classifier and typically also improves the
separation performance compared to a single decision tree. However, the advantage of the
straightforward interpretation of the decision tree is lost. While one can of course still
look at a limited number of trees trying to interprete the training result, one will hardly
be able to do so for hundreds of trees in a forest. Nevertheless, the general structure of the
selection can already be understood by looking at a limited number of individual trees.

Boosting

Boosting is a general procedure whose application is not limited to decision trees. The
same classifier is trained several times using a successively boosted (reweighted) training
event sample. The final classifier is then derived from the combination of all the individual
classifiers. The most popular boosting algorithm is the so-called AdaBoost [16] (adaptive
boost), where events that were misclassified during the training of a tree are given a
higher event weight in the training of the next following tree. Starting with the original
event weights when training the first decision tree, the subsequent tree is trained using a
modified event sample where the weights of previously misclassified events are multiplied
by a common boost weight a. The boost weight is derived from the misclassification rate

err of the previous tree,
1—err
a= .

(29)

err

The entire event sample is then renormalised to keep the total number of events (sum of
weights) in a tree constant.
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With the result of an individual tree h(x) (x being the tuple of input variables) encoded for
signal and background as h(x) = +1 and —1, respectively, the resulting event classification
ypT(x) for the boosted classifier is then given by

ypor(x) = 3 In(a) - hi(x), (30)

i€forest

where the sum is over all trees in the forest. Small (large) values for ygpr(x) indicate a
background-like (signal-like) event. Equation (30) is the default BDT boosting. It can be
altered using the option UseWeightedTrees=False for which the ygpT(x) is computed as
the average of the individual trees without the weighting factors In(a;).

Another possible modification of Eq. (30) is to use the training purity?° in the leaf node as
respectively signal or background weights rather than relying on the binary decision. This
option is chosen by setting the option UseYesNoLeaf=False. Such an approach however
should be adopted with care as the purity in the leaf nodes is sensitive to overtraining and
therefore typically overestimated. Tests performed so far with this option did not show
significant performance increase. Further studies together with tree pruning are needed
to better understand the behaviour of the purity-weighted BDTs.

The other boosting technique implemented in TMVA is a resampling technique, sometimes
referred to as bagging. It is selected via the BoostType option. The resampling is done with
replacement, which means that the same event is allowed to be (randomly) picked several
times from the parent sample. This is equivalent to regarding the training sample as being
a representation of the probability density distribution of the parent event ensemble. If
one draws an event out of this ensemble, it is more likely to draw an event from a region
of phase-space that has a high cross section, as the original Monte Carlo sample will have
more events in that region. If a selected event is kept in the original sample (that is
when the same event can be selected several times), the parent sample remains unchanged
so that the randomly extracted samples will have the same parent distribution, albeit
statistically fluctuated. Training several decision trees with different resampled training
data and combining them into a forest results in an averaged classifier that, just as for
boosting, is more stable with respect to statistical fluctuations in the training sample.
Technically the resampling is implemented by applying random weights to each event of
the parent sample.

Training (Building) a decision tree

The training, building or growing of a decision tree is the process that defines the splitting
criteria for each node. The training starts with the root node, where an initial splitting
criterion for the full training sample is determined. The split results in two subsets of
training events that each go through the same algorithm of determining the next splitting
iteration. This procedure is repeated until the whole tree is built. At each node, the

20The purity of a node is given by the ratio of signal events to all events in that node. Hence pure
background nodes have zero purity.
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split is determined by finding the variable and corresponding cut value that provides the
best separation between signal and background. The node splitting is stopped once it has
reached the minimum number of events which is specified in the BDT configuration. The
end- or leaf nodes are classified as signal or background according to the class the majority
of events belongs to.

A variety of separation criteria can be configured to assess the performance of a variable
and a specific cut requirement. Because a cut that selects predominantly background is
as valuable as one that selects signal, the criteria are symmetric with respect to the event
classes. All separation criteria have a maximum where the samples are fully mixed, i.e.,
at purity p = 0.5, and fall off to zero when the sample consists of one event class only.
Tests have revealed no significant performance disparity between the following separation
criteria:

e Gini Index [default], defined by p- (1 — p).
e Cross entropy, defined by —p - In(p) — (1 — p) - In(1 — p).
e Misclassification error, defined by 1 — max(p,1 — p).

e Statistical significance, defined by S/+/S + B.

The splitting criterion being always a cut on a single variable, the training procedure
selects the variable and cut value that optimises the increase in the separation index
between the parent node and the sum of the indices of the two daughter nodes, weighted
by their relative fraction of events. The cut values are optimised by scanning over the
variable range with a granularity that is set via the option nCuts. The default value of
nCuts=20 proved to be a good compromise between computing time and step size. Finer
stepping values did not increase noticeably the performance of the BDTs.

In principle, the splitting could continue until each leaf node contains only signal or only
background events, which could suggest that perfect discrimination is achievable. However,
such a decision tree would be strongly overtrained. To avoid overtraining a decision tree
must be pruned.

Pruning a decision tree

Pruning is the process of cutting back a tree from the bottom up after it has been built
to its maximum size. Its purpose is to remove statistically insignificant nodes and thus
reduce the overtraining of the tree. It has been found to be beneficial to first grow the tree
to its maximum size and then cut back, rather than interrupting the node splitting at an
earlier stage. This is because apparently insignificant splits can nevertheless lead to good
splits further down the tree. TMVA currently implements two tree pruning algorithms.

e For the expected error pruning [17] all leaf nodes for which the statistical error esti-
mates of the parent nodes are smaller than the combined statistical error estimates
of their daughter nodes are recursively deleted. The statistical error estimate of each
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node is calculated using the binomial error y/p - (1 — p)/N, where N is the number
of training events in the node and p its purity. The amount of pruning is controlled
by multiplying the error estimate by the fudge factor PruneStrength.

e Cost complexity pruning [18] relates the number of nodes in a subtree below a node
to the gain in terms of misclassified training events by the subtree compared the the
node itself with no further splitting. The cost estimate R chosen for the misclassifi-
cation of training events is given by the misclassification rate 1 — max(p,1 — p) in a
node. The cost complexity for this node is then defined by

_ R(node) — R(subtree below that node)
~ #nodes(subtree below that node) —1

(31)

The node with the smallest p value in the tree is recursively pruned away as long as
p < PruneStrength.

Note that the pruning is performed after the boosting so that the error fraction used by
AdaBoost is derived from the unpruned tree.

If the PruneStrength option is set to a negative value, an algorithm attempts to auto-
matically detect the optimal strength parameter. The training sample is divided into two
subsamples, of which only one is used for training, while the other one serves for vali-
dation. Starting with a small value, the prune strength is increased until the maximum
performance of the decision tree is reached on the validation sample. This is done for each
tree individually. Because of statistical fluctuations the performance may not appear as a
smooth function of the prune strength, which could lead to inaccurate optimisation if the
validation sample is too small.

5.7.3 Ranking

A ranking of the BDT input variables is derived by counting how often the variables are
used to split decision tree nodes, and by weighting each split occurrence by the separation
gain-squared it has achieved and by the number of events in the node [18]. This measure
of the variable importance can be used for a single decision tree as well as for a forest.

5.7.4 Performance

Only limited experience has been gained so far with boosted decision trees in HEP. In the
literature decision trees are sometimes referred to as the best “out of the box” classifiers.
This is because little tuning is required in order to obtain reasonably good results. This is
due to the simplicity of the method where each training step (node splitting) involves only
a one-dimensional cut optimisation. Decision trees are also insensitive to the inclusion of
poorly discriminating input variables. While for artificial neural networks it is typically
more difficult to deal with such additional variables, the decision tree training algorithm
will basically ignore non discriminating variables as for each node splitting only the best
discriminating variable is used. However, the simplicity of decision trees has the drawback
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that their theoretically best performance on a given problem is generally inferior to other
techniques like neural networks. This is seen for example using the academic training sam-
ples included in the TMVA package. For this sample, which has equal RMS but shifted
mean values for signal and background and linear correlations between the variables only,
the Fischer discriminant provides theoretically optimal discrimination results. While the
artificial neural networks are able to reproduce this optimal selection performance the
BDTs always fall short in doing so. However, in other academic examples with more com-
plex correlations or real life examples, the BDTs often outperform the other techniques.
This is because either there are not enough training events available that would be needed
by the other classifiers, or the optimal configuration (i.e. how many hidden layers, which
variables) of the neural network has not been specified.

5.8 Predictive learning via rule ensembles

This classifier is a TMVA implementation of Friedman-Popscus’ RuleFit method described
in [19]. Its idea is to use an ensemble of so-called rules to create a scoring function with
good classification power. Each rule r; is defined by a sequence of cuts, such as

r1(x) = I(z2 < 100.0) - I(z3 > 35.0),

ro(x) = 1(0.45 < 4 < 1.00) - I(z1 > 150.0),

7"3(X) I(.’II3 < 11.00) s

where the z; are discriminating input variables, and I(...) returns the truth of its argu-

ment. A rule applied on a given event is non-zero only if all of its cuts are satisfied, in
which case the rule returns 1.

The easiest way to create an ensemble of rules is to extract it from a forest of decision trees
(cf. Sec. 5.7). Every node in a tree (except the root node) corresponds to a sequence of
cuts required to reach the node from the root node, and can be regarded as a rule. Hence
for the tree illustrated in Fig. 12 a total of 8 rules can be formed. Linear combinations
of the rules in the ensemble are created with coefficients (rule weights) calculated using
a regularised minimisation procedure [20]. The resulting linear combination of all rules
defines a score function (see below) which provides the RuleFit response yrr(x).

In some cases a very large rule ensemble is required to obtain a competitive discrimination
between signal and background. A particularly difficult situation is when the true (but
unknown) scoring function is described by a linear combination of the input variables. In
such cases, e.g., a Fischer discriminant would perform well. To ease the rule optimisation
task, a linear combination of the input variables is added to the model. The minimisation
procedure will then select the appropriate coefficients for the rules and the linear terms.
More details are given in Sec. 5.8.2 below.

5.8.1 Booking options

The RuleFit classifier is booked via the command:
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factory->BookMethod( Types::kRuleFit, "RuleFit", "<options>" );

Code Example 32: Booking of RuleFit: the first argument is a predefined enumerator, the second argument
is a user-defined string identifier, and the third argument is the configuration options string. See Sec. 3.1.4
for more information on the booking.

The RuleFit configuration options are given in Option Table 5.8.1.

5.8.2 Description of the classifi er and its implementation

As for all TMVA classifiers, the goal of the rule learning is to find a classification function
yrr(x) that optimally classifies an event according to the tuple of input observations
(variables) x. The classification function is written as

yrr(x) = ag + Z am fm (%), (32)
m=1

where the set {fp,(x)}a, forms an ensemble of base learners with My elements. A base
learner may be any discriminating function derived from the training data. In our case,
they consist of rules and linear terms as described in the introduction. The complete
model then reads

Tivar

Mp
yrr(X) = ap + Z U (X) + Z bix; . (33)
m=1 =1
To protect against outliers, the variables in the linear terms are modified to
) = min(8;", max(6;)), (34)

where 5ii are the lower and upper 8 quantiles of the variable z;. If the variables are used
“as is”, they may have an unequal a priori influence relative to the rules. To counter this
effect, the variables are normalised

T, = op -3 /0;, (35)

where o, and o; are the estimated standard deviations of an ensemble of rules and the
variable z}, respectively.

Rule generation

The rules are extracted from a random forest of decision trees. There are several ways
to generate a forest. In the current RuleFit implementation it is generated from random
subsamples of the training data. Each tree in a forest is generated using a given fraction
(SampleFraction) of the training sample.?! If the user gives a fraction < 0, the fraction

21Since both the number of trees and the sample fractions are free parameters, the subsamples used
per tree will overlap if the number of trees is greater than 1/SampleFraction. By setting nTrees=-1,
the maximum number of trees allowed without overlapping will be selected. In the output, it is printed
whether the subsets are overlapping or not.
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Option Values Description
Model ModRuleLinear*, ModRule, This option controls whether rules
ModLinear and/or linear terms are to be included
LinQuantile 0.025 Concerns only the linear terms and
defines a region outside which a vari-
able is regarded as an outlier; a quan-
tile of zero retains all values
MinTImp 0.01 Minimum relative importance ac-
cepted in the final model
RuleMaxDist 0.001 Minimum “rule distance” allowed; re-
moves similar rules; if zero, all rules
are kept
SampleFraction -1 Event fraction used to train each tree;
if < 0, the fraction is calculated using
Eq. (36)
nTrees -1 Number of trees in forest; for further
description of this and the following
three options, see Option Table 9
nCuts 20 Scan depths of node cut optimisation
SeparationType GiniIndex*, Separation criterion for node splitting
MisClassificationError,
CrossEntropy,
SDivSqrtSPlusB
EventsMin 0.1 Minimum fraction giving the mini-
mum number of events in a node
where further splitting is stopped
EventsMax 0.9 Ditto, maximum fraction
GDTau 0.6 Minimisation fit threshold; used only
if the tau scan range is empty; for the
definition of tau, see Sec. 21
GDTauMin .0 Minimum tau in scan
GDTauMax .0 Maximum tau in scan
GDNTau 1 Number of tau; if < 2, GDTau is used
GDTauScan 200 Number of points to scan for best tau
along path
GDStep 0.01 Step size along the path
GDNSteps 10000 Maximum number of steps
GDErrScale 1.1 Threshold for error-rate (always > 1)

Option Table 10: Configuration options for RuleFit. Values given are defaults. If predefined categories
exist, the default category is marked by a ’+’. The options in Option Table 1 can also be configured.
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is calculated from the training sample size N (signal and background) using the empirical
formula [21]
f = min(0.5, (100.0 + 6.0 - VN)/N) . (36)

The topology of each tree is controlled by the configuration parameters EventsMin, EventsMax,
nCuts and SeparationType, the last two of which are described in Sec. 5.7. The first two
parameters define a range of fractions which are used to calculate the minimum number

of events in a node required for further splitting. For each tree, a fraction is drawn from a
uniform distribution within the given range. The obtained fraction is then multiplied with
the number of training events used for the tree, giving the minimum number of events in

a node to allow for splitting. In this way both large trees (small fraction) giving complex
rules and small trees (large fraction) for simple rules are created. For a given forest of N,
trees, where each tree has ny leaf nodes, the maximum number of possible rules is

Nt
Mpmax =Y 2(ng; — 1). (37)
=1
To prune similar rules, a distance is defined between two topologically equal rules. Two
rules are topologically equal if their cut sequences follow the same variables only differing
in their cut values. The rule distance is then defined by

63L+5?U

DD (38)
7

where J; ,(r) is the difference in lower (upper) limit between the two cuts containing the
variable x;, 1 = 1,...,7ny,. The difference is normalised to the RMS-squared O'Z-Z of the
variable. Similar rules with a distance smaller than RuleMinDist are removed from the
rule ensemble. The parameter can be tuned to improve speed and to suppress noise.
However, the cut should be used with care since a too large cut value will deplete the rule
ensemble and weaken its classification performance.

Fitting

Once the rules are defined, the coefficients in Eq. (33) are fitted using the training data.
For details, the fitting method is described in [20]. A brief description is provided below
to motivate the corresponding RuleFit options.

A loss function L(yrr(x)|9), given by the “squared-error ramp” [20]
L(yrrl9) = (5 = H(yrr))* , (39)

where H(y) = max(—1, min(yrr,1)), quantifies the “cost” of misclassifying an event of
given true class . The risk R is defined by the expectation value of L with respect to x
and the true class. Since the true distributions are generally not known, the average of N
training events is used as an estimate

N

R = X Homs ()l (40)
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A line element in the parameter space of the rule weights (given by the vector a of all
coefficients) is then defined by

a(e+ de) = a(e) + de - g(e), (41)

where de is a positive small increment and g(e) is the negative derivative of the estimated
risk R, evaluated at a(e). The estimated risk-gradient is evaluated using a sub-sample
(Eq. 36) of the training events.

Starting with all weights set to zero, the consecutive application of Eq. (41) creates a path
in the a space. At each step, the procedure selects only the gradients g; with absolute
values greater than a certain fraction (7) of the largest gradient. The fraction 7 is an
a priori unknown quantity between 0 and 1. The value 7 = 0 implies that at each
step on the path all gradients are used, while only the strongest gradient is selected for
7 = 1. It is possible to automatically estimate the appropriate 7 by means of a scan.
To do so, several paths (GDNTau) with different fractions (range GDTauMin, GDTauMax)
are initially scanned for a certain number of points (GDTauScan), and the path with the
best performance is selected. The step size and the number of points along the paths are
given by the options GDStep and GDNSteps. After every 100 steps, the performance is
estimated using the area under the curve of background rejection versus signal efficiency.
The area is evaluated using the events not used in the calculation of the path (one-fold
cross validation). The stepping along the path is stopped when the error rate e = 1 — area
is larger than (GDErrScale-mine) and the point giving the minimum error rate is selected.
A simple example with a few scan points is illustrated in Fig. 13.

5.8.3 Ranking
Since the input variables are normalised, the ranking of variables follows naturally from the
coefficients of the model. To each rule m (m =1,..., Mg) can be assigned an importance
defined by

I, = |am| v/ sm (1.0 — s) (42)

where s, is the support of the rule with the following definition

1 N
Sm = N Z Tm(Xn) - (43)

The support is thus the average response for a given rule on the data sample. A large
support implies that many events pass the cuts of the rule. Hence, such rules cannot have
strong discriminating power. On the other hand, rules with small support only accept
few events. They may be important for these few events they accept, but they are not in
the overall picture. The definition (42) for the rule importance suppresses rules with both
large and small support.

For the linear terms, the definition of importance is

I = |bi| - 0i, (44)
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Figure 13: An example of a path scan in two dimensions. Each point represents an € in Eq. (41) and each
step is given by de. The direction along the path at each point is given by the vector g. For the first
few points, the paths 7(1,2,3) are created with different values of 7. After a given number of steps, the
best path is chosen and the search is continued. It stops when the best point is found. That is, when the
estimated error-rate is minimum.

so that variables with small overall variation will be assigned a small importance.

A measure of the variable importance may then be defined by

Ti=Li+ > In/tm, (45)

m|T;€Erm

where the sum is over all rules containing the variable z;, and gy, is the number of variables
used in the rule r,,. This is introduced in order to share the importance equally between
all variables in rules with more than one variable.

5.8.4 Performance

Rule ensemble based learning machines are not yet well known within the HEP community,
although they start to receive some attention [22]. Apart from RuleFit [19] other rule
ensemble learners exists, such as SLIPPER [23].

The TMVA implementation of RuleFit follows closely the original design described in
Ref. [19]. Currently the performance is however slightly less robust than the one of the
Friedman-Popescu package. Also, the experience using the method is still scarce at the
time of this writing.

To optimise the performance of RuleFit several strategies can be employed. The training
consists of two steps, rule generation and rule ensemble fitting. One approach is to modify
the complexity of the generated rule ensemble by changing either the number of trees in
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the forest, or the complexity of each tree. In general, large tree ensembles with varying
trees sizes perform better than short noncomplex ones. The drawback is of course that
fitting becomes slow. However, if the fitting performs well, it is likely that a large amount
of rules will have small or zero coefficients. These can be removed, thus simplifying the
ensemble. The fitting performance can be improved by increasing the number of steps
along with using a smaller step size. Again, this will be at the cost of speed performance
although only at the training stage. The setting for the parameter 7 may greatly affect
the result. Testing with extreme values (close to 0 or 1), will give a feeling for what is a
good choice for the given sample. The optimum value will differ with the training sample,
so that initially the user is advised to use the automatic scan option to derive the best
path.

6 Summary and Plans

TMVA is a toolkit that unifies highly customizable multivariate classification algorithms
in a single framework thus ensuring convenient use and an objective performance assess-
ment. It is designed for data mining applications in high-energy physics, but not restricted
to these. Source code and library of TMVA-v.3.5.0 and higher versions are part of the
standard ROOT distribution kit (v5.14 and higher). The newest TMVA development ver-
sion can be downloaded from Sourceforge.net at http://tmva.sf.net.

This manual introduced the main steps allowing a user to optimise and perform her/his
own multivariate analysis. Let us recall the main features of the TMVA design and pur-
pose:

e TMVA works in transparent factory mode to allow an unbiased performance assess-
ment and comparison: all classifiers see the same training and test data, and are
evaluated following the same prescription.

e A complete TMVA analysis consists of two steps:

1. Training: the ensemble of available and optimally multivariate customized
classifiers are trained and tested on independent signal and background data
samples; the classifiers are evaluated and the most performing and concise ones
are selected.

2. Application: selected trained classifiers are used for the classification of data
samples with unknown signal and background composition.

e A Factory class object created by the user organises the customization and interac-
tion with the classifiers for the training, testing and evaluation phases of the TMVA
analysis. The training results together with the configuration of the classifiers are
written to result (“weight”) files.

e Standardized outputs during the Factory running, and dedicated ROOT macros
allow a refined assessment of each classifier’s behaviour and performance.
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Once appropriate classifiers have been chosen by the user, they can be applied to
data samples with unknown classification. Here, the interaction with the classifiers
occurs through a Reader class object created by the user. A classifier is booked
by giving the path to its weight file resulting from the training stage. Then, inside
the user’s event loop, the MVA response is returned by the Reader for each of the
booked classifiers, as a function of the event values of the discriminating variables
used as input for the classifiers. Alternatively, the user may request from the Reader
the probability that a given event belongs to the signal hypothesis.

We give below a summary of the TMVA classifiers, outlining the current state of their
implementation, their advantages and shortcomings.

Rectangular Cut Optimisation

The current implementation is rather advanced. It includes speed-optimised range
searches using binary trees, and three optimisation algorithms: Monte Carlo sam-
pling, a Genetic Algorithm and Simulated Annealing. In spite of these tools, optimis-
ing the cuts for a large number of discriminating variables remains challenging. The
user is advised to reduce the available dimensions to the most significant variables
(e.g., using a principal component analysis) prior to optimising the cuts.

Likelihood
Automatic PDF building through histogram smoothing and approximation with
various spline functions and kernel density estimators is implemented.

PDERS

The multidimensional likelihood approach is in an advanced development stage pro-
viding several kernel estimation methods, and speed optimised range search using
event sorting in binary trees.

Fisher and H-Matriz
These are mature algorithms. The Fisher discriminant is linear only in the present
implementation. The addition of higher-order moments is considered.

Artificial Neural Networks

Significant work went into the implementation of fast feed-forward multilayer per-
ceptron algorithms into TMVA. Two external ANNs have been integrated as fully
independent methods, and another one has been newly developed for TMVA, with
emphasis on flexibility and speed. The performance of the latter ANN (MLP) has
been cross checked against the Stuttgart ANN (using as an example 7 identification
in ATLAS), and was found to achieve competitive performance.

Boosted Decision Trees

The BDT implementation has received constant attention over the full year of its
development. The current version includes additional features like bagging, and
manual or automatic node pruning.
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o RuleFit
The original libraries written by J. Friedman are publicly available, but not the
source code. We have therefore decided to attempt an independent implementa-
tion of this powerful classification approach. The current version achieves almost
equivalent results, with however usually somewhat better robustness for the original
implementation.

Although TMVA has reached a mature status and has been well tested by many users,
there exist limitations that will be worked on for future releases. In particular, the present
setup does not allow an unequal number of training events for signal and background. The
reason for this restriction is that not all classifiers yet properly handle event weights that
deviate from one (though the majority of the classifiers does).

The current emphasis of the TMVA core developments lies on the consolidation and further
improvement of the existing classifiers and of the TMVA framework. In spite of that
new classifiers are under development. Among these are: a Support Vector Machine,
Bayesian classifiers, and a Committee classifier, building weighted rules out of arbitrary
combinations of TMVA classifiers.
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A Classifier booking

Code Example 33 gives a collection of classifier bookings together with useful default
options. These bookings can also be found in the example training job TMVAnalysis.C.
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factory->BookMethod( TMVA: :Types: :kCuts, "Cuts",
"MC:EffSel :MC_NRandCuts=100000:A11FSmart" );

factory->BookMethod( TMVA::Types: :kLikelihood, "Likelihood",
"!TransformQutput :Spline=2:NSmooth=5" );

factory->BookMethod( TMVA: :Types: :kLikelihood, "LikelihoodD",
"!TransformQutput :Spline=2:NSmooth=5:Preprocess=Decorrelate" );

factory->BookMethod( TMVA: :Types: :kFisher, "Fisher", "!V:Fisher" );

factory->BookMethod( TMVA::Types::kMLP, "MLP",
"1V:NCycles=200:HiddenlLayers=N+1,N:TestRate=5" );

factory->BookMethod( TMVA: :Types: :kPDERS, "PDERS",
"1V:VolumeRangeMode=RMS:KernelEstimator=Teepee:\
MaxVIterations=50:InitialScale=0.99" );

factory->BookMethod( TMVA: :Types: :kBDT, "BDT",
"1V:NTrees=400:BoostType=AdaBoost:SeparationType=GiniIndex:
nEventsMin=20:nCuts=20:PruneMethod=CostComplexity:
PruneStrength=3.5:Preprocess=Decorrelate" ) ;

factory->BookMethod( TMVA::Types::kRuleFit, "RuleFit",
"1V:NTrees=20:SampleFraction=-1:nEventsMin=60:nCuts=20:
MinImp=0.001:Model=ModLinear :GDTau=0.6:GDStep=0.01:
GDNSteps=100000:SeparationType=GiniIndex:RuleMaxDist=1e-5" );

Code Example 33: Examples for booking classifiers in TMVA. The first argument is a unique type enu-
merator (the avaliable types can be looked up in src/Types.h), the second is a user-defined name (must
be unique among all booked classifiers), and the third a configuration option string that is specific to the
classifier. For options that are not set in the string default values are used. The syntax of the options
should become clear from the above examples. Individual options are separated by a ’:’. Boolean variables
can be set either explicitly as MyBoolVar=True/False, or just via MyBoolVar/!MyBoolVar. All concrete
option variables are explained in Secs. 4 and 5.
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