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Abstract

In high-energy physics, with the search for ever smaller signals in ever larger data sets, it has
become essential to extract a maximum of the available information from the data. Multivariate
classification methods based on machine learning techniques have become a fundamental ingre-
dient to most analyses. Also the multivariate classifiers themselves have significantly evolved in
recent years. Statisticians have found new ways to tune and to combine classifiers to further gain
in performance. Integrated into the analysis framework ROOT, TMVA is a toolkit which holds a
large variety of multivariate classification algorithms. They range from rectangular cut optimization
using a genetic algorithm and from likelihood estimators, over linear discriminants and non-linear
neural networks, to sophisticated more recent classifiers such as boosted decision trees, rule en-
semble fitting and a support vector machine. TMVA manages the simultaneous training, testing,
and performance evaluation of all these classifiers with a user-friendly interface, and expedites
the application of the trained classifiers to data.

TMVA 3.7 – Toolkit for Multivariate Data Analysis with ROOT
Copyright c© 2005-2007, Regents of CERN (Switzerland), University of Victoria (Canada),

MPI-Kernphysik Heidelberg (Germany), and LAPP (France).
BSD license: http://tmva.sf.net/LICENSE.

Authors:
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1 Introduction

The Toolkit for Multivariate Analysis (TMVA) provides a ROOT-integrated environment for the
processing and parallel evaluation of sophisticated multivariate classification techniques.1 TMVA
is specifically designed to the needs of high-energy physics (HEP) applications, but should not be
restricted to these.2 The package includes:

• Rectangular cut optimisation (binary splits, Sec.5.1)

• Projective likelihood estimator (Sec.5.2)

• Multi-dimensional likelihood estimator (PDE range-search, Sec.5.3)

• Linear discriminant analysis (H-Matrix and Fisher, Secs.5.4, 5.5)

• Artificial neural networks (three different implementations, Sec.5.6)

• Boosted/bagged decision trees (Sec.5.7)

• Predictive learning via rule ensembles (RuleFit, Sec.5.8)

• Support Vector Machine (beta version, Sec.5.9)

The software package consists of object-oriented implementations in C++/ROOT for each of these
discrimination techniques and provides training, testing and performance evaluation algorithms
and visualization scripts. Detailed descriptions of all the TMVA classifiers and their options are
given in Sec.5. Their training and testing is performed with the use of user-supplied data sets in
form of ROOT trees or text files, where each event can have an individual weight. The sample
composition (event classification) in these data sets must be known. Preselection requirements
and transformations can be applied on this data. TMVA supports the use of variable combinations
and formulas, just as they are available for theDraw command of a ROOT tree.

TMVA works in transparent factory mode to guarantee an unbiased performance comparison be-
tween the classifiers: all classifiers see the same training and test data, and are evaluated following
the same prescriptions within the same execution job. AFactory class organises the interaction
between the user and the TMVA analysis steps. It performs preanalysis and preprocessing of the
training data to assess basic properties of the discriminating variables used as input to the classi-
fiers. The linear correlation coefficients of the input variables are calculated and displayed, and a
preliminary ranking is derived (which is later superseded by classifier-specific variable rankings).
The variables can be linearly transformed (individually for each classifier) into a non-correlated

1A classification problem corresponds in more general terms to adiscretised regressionproblem. A regression is
the process that estimates the parameter values of a function, which predicts the value of a response variable in terms
of the values of other variables (theinputvariables).

2TMVA discriminates signal from background in data sets with unknown composition of these two samples. In
frequent use cases the background (sometimes also the signal) consists of a variety of different populations with char-
acteristic properties, which could call for classifiers with more than two discrimination classes. However, in practice it
is usually possible to serialize background fighting by training individual classifiers for each background source, and
applying consecutive requirements to these.
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variable space or projected upon their principle components. To compare the signal-efficiency and
background-rejection performance of the classifiers, the analysis job prints tabulated results for
some benchmark values (see Sec.3.1.7), besides other criteria such as a measure of the separa-
tion and the maximum signal significance. Smooth efficiency versus background rejection curves
are stored in a ROOT output file, together with other graphical evaluation information. These re-
sults can be displayed using ROOT macros, which are conveniently executed via a graphical user
interface that comes with the TMVA distribution (see Sec.3.2). The TMVA training job runs al-
ternatively as a ROOT script, as a standalone executable, where libTMVA.so is linked as a shared
library, or as a python script via the PyROOT interface. Each classifier trained in one of these
applications writes its configuration and training results in result (“weight”) files, which in the
default configuration consists of one text file.

A light-weightReaderclass is provided, which reads and interprets the weight files (interfaced by
the corresponding classifiers), and which can be included in any C++ executable, ROOT macro or
python analysis job.

We have put emphasis on the clarity and functionality of the Factory and Reader interfaces to the
user applications, which will hardly exceed a few lines of code. All classifiers run with reasonable
default configurations and should have saytisfying performance for average applications.We stress
however that, to solve a concrete problem, all classifiers require at least some specific tuning to
deploy their maximum classification capacity.Individual optimisation and customization of the
classifiers is achieved via configuration strings.

This manual introduces the TMVA training Factory and Reader interfaces, and describes design
and implementation of the various multivariate classifiers. It is not the goal here to provide a gen-
eral introduction to multivariate analysis techniques. Other excellent reviews exist on this subject
(see, e.g., Refs. [1, 2, 3]). The document begins with a quick TMVA start reference in Sec.2, and
provides a more complete introduction to the TMVA design and its functionality in Sec.3. Com-
mon tools used by several classifiers such as the transformation of input variables are discussed in
Sec.4. All the TMVA classifiers including their configurations and tuning options are described
in Secs.5.1-5.9.

Copyrights and credits

TMVA is an open source product. Redistribution and use of TMVA in source and binary forms, with or without
modification, are permitted according to the terms listed in the BSD license.3 Several similar combined multivariate
classification (“data mining”) efforts exist with rising importance in most fields of science and industry. In the HEP
community the packageStatPatternRecognition[4, 5] is in use. The idea of parallel training and evaluation of MVA-
based classification in HEP has been pioneered by theCorneliuspackage, developed by the Tagging Group of the
BABAR Collaboration [6].

3For the BSD license, seehttp://tmva.sf.net/LICENSE.

http://tmva.sf.net/LICENSE
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2 TMVA Quick Start

To run TMVA it is not necessary to know much about its concepts or to understand the detailed
functionality of the multivariate classifiers. Better, just begin with the quick start tutorial given
below. One should note that the TMVA version obtained from the open source software platform
Sourceforge.net (where TMVA is developed), and the one which is part of ROOT have a different
directory structure for the example macros used for the tutorial. Wherever differences in command
lines occur, they are given for both versions.

2.1 How to download and build TMVA

TMVA is maintained at Sourceforge.net (http://tmva.sf.net). The TMVA project is built upon
ROOT (http://root.cern.ch/), so that for TMVA to run ROOT must be installed. Since ROOT
version 5.11/06, TMVA comes as integral part of ROOT and can be used from the ROOT prompt
without further preparation. For older ROOT versions or if the latest TMVA features are desired,
the TMVA source code can be downloaded from Sourceforge.net. Since we do not provide prebuilt
libraries for any platform, the library must be built by the user (see below). The source code can
be eitherdownloadedas a gzipped tar file or via CVS anonymous access:

~> cvs -z3 -d:pserver:anonymous@tmva.cvs.sourceforge.net:/cvsroot/tmva\

co -r V03-04-00 -P TMVA

Code Example 1: TMVA

While the source code is known to compile with VisualC++ on Windows (which is a requirement
for ROOT), we do not provide project support for this platform yet. For Unix and most Linux
flavours custom Makefiles are provided with the TMVA distribution, so that the library can be
built by typing:

~> cd TMVA

~/TMVA> source setup.sh # for c-shell family: source setup.csh

~/TMVA> cd src

~/TMVA/src> make

Code Example 2: Building the TMVA library under Linux/Unix using the provided Makefile. Thesetup.[c]sh
script must be executed to ensure the correct setting of symbolic links and library paths required by TMVA.

After compilation, the libraryTMVA/lib/libTMVA.so should be present.

2.2 Version compatibility

TMVA can be run with any ROOT version above v4.02. The few occurring conflicts due to ROOT
source code evolution after v4.02 are intercepted in TMVA via C++ preprocessor conditions.

http://tmva.sf.net
http://root.cern.ch/
http://sourceforge.net/project/showfiles.php?group_id=152074
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2.3 The TMVA namespace

All TMVA classes are embedded in the namespaceTMVA. For interactive access, or use in macros
the classes must thus be preceded byTMVA::, or one may use the commandusing namespace

TMVA instead.

2.4 Example jobs

TMVA comes with example jobs for the training phase (this phase actually includes training, test-
ing and evaluation) using the TMVAFactory, as well as the application of the training results
in a classification analysis using the TMVAReader. The first task is performed in the program
TMVAnalysis, and the second inTMVApplication.

In the ROOT version of TMVA the macrosTMVAnalysis.C andTMVApplication.C are located
in the directory$ROOTSYS/tmva/test/.

In the Sourceforge.net version the macrosTMVAnalysis.C andTMVApplication.C are located
in TMVA/macros. At Sourceforge.net we also provide these examples in form of the C++ executa-
blesTMVAnalysis.cxx andTMVApplication.cxx, which are located inTMVA/examples. To
create the executables, typecd ∼/TMVA/example; make, and then simply execute them by typ-
ing ./TMVAnalysis and./TMVApplication. To illustrate how TMVA can be used in a python
script via PyROOT we also provide the scriptTMVAnalysis.py located inTMVA/python, which
again has the same functionality as the macroTMVAnalysis.C.

2.5 Running the example

The easiest way to get started with TMVA is to run theTMVAnalysis.C example macro. It uses an
academic toy data set for training and testing, which consists of four linearly correlated, Gaussian
distributed discriminating input variables, with different sample means for signal and background.
All classifiers are trained, tested and evaluated using the toy dataset in the same way the user is
expected to proceed for his or her own data. It is a valuable exercise to look at the example file in
more detail. Most of the command lines therein should be self explaining, and one will easily find
how they need to be customized to run TMVA on a real use case. A detailed description is given
in Sec.3.

The toy data set used by the example is included in the Sourceforge.net download. For the
ROOT distribution, the example macroTMVAnalysis.C automatically fetches the data file from
the web using the correspondingTFile constructorTFile::Open("http://root.cern.ch/
files/tmva example.root"). The example ROOT macro can be run from any designated test
directoryworkdir, after adding the macro directory to ROOT’s macro search path:

~/workdir> echo "Unix.*.Root.MacroPath: ~/TMVA/macros" >> .rootrc

~/workdir> root -l ~/TMVA/macros/TMVAnalysis.C

Code Example 3: Running the exampleTMVAnalysis.C using the Sourceforge.net version of TMVA.
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Figure 1: Graphical user interface (GUI) to execute macros displaying training, test and evaluation results (see Table1).
The GUI can be launched manually by executing the scriptsTMVA/macros/TMVAGui.C (Sourceforge.net version) or
$ROOTSYS/tmva/test/TMVAGui.C (ROOT version). In short, the buttons behave as follows: (1a) plots the signal and
background distributions of the input variables (training sample), (1b) the same after decorrelation transformation, (1c)
the same after PCA decorrelation (these latter two buttons only display results if the corresponding transformations have
been requested by at least one classifier), (2a–c) scatters (with superimposed profiles) of all pairs of input variables for
signal and background for the three transformation types (training sample), (3) linear correlation coefficients between
the input variables for signal and background (training sample), (4a) signal and background distributions for the trained
classifiers (test sample), (4b) the corresponding probability distributions, (5a) signal and background efficiencies (and
purities assuming an equal number of signal and background events) as a function of the cut on the classifier outputs,
(5b) background rejection versus signal efficiency obtained when cutting on the classifier outputs (ROC curve, from the
test sample). The following buttons launch classifier-specific macros: (6) reference distributions (PDFs) used for the
likelihood classifier compared to the training data, (7a) architecture of the MLP neural network, (7b) convergence of the
MLP error parameter for the training and test samples (check for overtraining), (8) plots a sketch of the first decision tree
in the forest, (9) compares the classifier PDFs to the training data, (10) plots the importance for the RuleFit classifier,
and (11) quits the GUI. Titles in brackets indicate actions that can only be taken if the corresponding transformations
or classifiers have been applied/used during the training.

~/workdir> echo "Unix.*.Root.MacroPath: $ROOTSYS/tmva/test" >> .rootrc

~/workdir> root -l $ROOTSYS/tmva/test/TMVAnalysis.C

Code Example 4: Running the exampleTMVAnalysis.C using the ROOT version of TMVA.

The training job provides formatted output logging containing analysis information such as: signal
and background linear correlation matrices for the input variables, variable ranking, summaries
of the classifier configurations, goodness-of-fit evaluation for PDFs (if requested), signal and
background correlations between the various classifiers, their signal/background-likeness decision
overlap, signal efficiencies at benchmark background rejection rates as well as other performance
estimators, and overtraining validation output.
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Figure 2: Example plots for input variable distributions.

2.5.1 Displaying the results

Besides so-called “weight” files containing the classifier-specific training results, TMVA also pro-
vides a variety of control and performance plots that can be displayed via a set of ROOT macros
available inTMVA/macros/ or $ROOTSYS/tmva/test/ for the Sourceforge.net and ROOT distri-
butions of TMVA, respectively. The macros are summarized in Tables1 and2. At the end of the
example job a graphical user interface (GUI) is displayed, which conveniently allows to run these
macros (see Fig.1).

Examples for plots produced by these macros are given in Figs.3-5. The distributions of the input
variables for signal and background according to our example job are shown in Fig.2. It is use-
ful to quantify the correlations between the input variables. These are drawn in form of a scatter
plot with the superimposed profile for two of the input variables in Fig.3 (upper left). As will be
discussed in Sec.4, TMVA allows to perform a linear decorrelation transformation of the input
variables prior to the classifier training. The result of such decorrelation is shown at the upper
right hand plot of Fig.3. The lower plots display the linear correlation coefficients between all
input variables, for the signal and background training samples.
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Figure 3: Correlation between input variables. Upper left: correlations between var3 and var4 for the background
training sample. Upper right: the same after applying a decorrelation transformation (see Sec.4.1.1). Lower plots:
linear correlation coefficients for the signal and background training samples.

Figure4 shows some of the classifier output distributions for signal and background events from
the test sample. By TMVA convention, signal (background) events accumulate at large (small)
classifier output values. Hence, cutting on the output and retaining the events withyMVA larger
than the cut requirement selects signal samples with efficiencies and purities that respectively
decrease and increase with the cut value. The resulting relations between background rejection
versus signal efficiency are shown in Fig.5 for all classifiers that were used in the example macro.
This plot belongs to the class ofReceiver Operating Characteristicdiagrams, which in its standard
form shows the true positive rate versus the false positive rate for the different possible cutpoints
of a hypothesis test.

More macros are available to validate training and response of specific classifiers. For example,
the macrolikelihoodrefs.C compares the probability density functions used by the likelihood
classifier to the normalised variable distributions of the training sample. It is also possible to
visualize the MLP neural network architecture and to draw decision trees (see Table2).
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic test
sample. Shown are likelihood (upper left), PDE range search (upper right), MLP (lower left) and boosted decision
trees.

3 Using TMVA

A typical TMVA analysis consists of two independent phases: thetraining phase, where the multi-
variate classifiers are trained, tested and evaluated, and anapplicationphase, where selected clas-
sifiers are applied to the concrete classification problem they have been trained for. An overview
of the code flow for these two phases as implemented in the examplesTMVAnalysis.C and
TMVApplication.C (see Sec.2.4), is sketched in Fig.6.

In the training phase, the communication of the user with the data sets and the classifiers is per-
formed via aFactory object, created at the beginning of the program. The TMVA Factory pro-
vides member functions to specify the training and testing data sets, to register the discriminat-
ing input variables, and to book the multivariate classifiers. After the configuration the Factory
calls for training, testing and the evaluation of the booked classifiers. Classifier-specific result
(“weight”) files are created after the training phase.

The application of training results to a data set with unknown sample composition is governed
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Figure 5: Example for the background rejection versus signal efficiency obtained for the various classifiers after
evaluating the test sample.

by theReader object. During initialization, the user registers the input variables4 together with
their local memory addresses, and books the classifiers that were found to be the most appropriate
ones during the training phase. As booking argument, the bulk name of the weight file is given,
which provides for each of the classifiers full and consistent configuration according to the train-
ing results. Within the event loop, the input variables are updated for each event, and the selected
classifier outputs are computed.

3.1 The Factory

The TMVA training phase begins by instantiating aFactory object with configuration options
listed in Option-Table1.

TMVA::Factory* factory

= new TMVA::Factory( "<JobName>", targetFile, "<options>" );

Code Example 5: Instantiating a Factory class object. The first argument is the user-defined job name which will also
appear in the name of the weight files containing the training results. The second argument is the pointer to a writable
TFile target file created by the user, where control and performance histograms are stored. Currently the only option
that can be specified for the Factory is “V” for verbose print out.

4This somewhat redundant operation is required to verify the correspondence between the Reader analysis and the
weight files used.
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Figure 6: Left: sequence flow (top to bottom) of a typical TMVA training application. The user script can be a ROOT
macro, C++ executable, python script or similar. The user creates a target ROOTTFile, which is used by the TMVA
Factory object to write histograms and trees. The Factory, after creation by the user, organises the user’s interaction
with the TMVA modules. It is the only object directly created by the user. First the discriminating variables that must
beTFormula-compliant functions of branches in the signal and background training tree are registered. Then, selected
classifiers are booked through a type identifier, and configuration options are specified via an option string. The TMVA
analysis proceeds by consecutively calling the training, testing and performance evaluation methods of the Factory. The
training results for all classifiers used are written to custom weight files and the evaluation histograms are stored in the
target file. They can be analysed with specific macros that come with TMVA (cf. Tables1 and2). Right:sequence flow
(top to bottom) of a typical TMVA analysis application. The classifiers that have been selected as appropriate in the
preceding training and evaluation step are now used to classify data of unknown signal and background composition.
First, aReader class object is created, which serves as interface to the classifiers’ response, just as was the Factory
for the training and performance evaluation. The discriminating variables and references to locally declared memory
placeholders are registered with the Reader. The variable names must coincide with those used for the training. The
appropriate classifiers are booked through identification with their weight file, which fully configures the classifier.
Only the bulk part of the name (that is the file name without extension) is given. The Reader adds the appropriate file
extensions.txt and.root for the I/O operations. The user then runs the event loop, where for each event the values
of the input variables are copied to the reserved memory addresses, and the MVA response values are computed. The
user is responsible for the further use of the information.
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Option Values Description

V False Verbose flag

Color True Switch for color output

Option Table 1: Configuration options for the Factory. Colored output is switched on by default, except when running
ROOT in batch mode (i.e., when the-b option of the CINT interpreter is invoked).

3.1.1 Specifying training and testing data

The input data sets used for training and testing of the multivariate classifiers need to be handed
to the Factory. TMVA supports ROOTTTree and derivedTChain objects as well as text files. If
ROOT trees are used, the signal and background events can be located in the same or in different
trees. Overall weights can be specified for the signal and background training data (the treatment
of event-by-event weights is discussed below).

Specifying training data in ROOT tree format with signal and background events being located in
different trees:

// Get the signal and background trees from TFile source(s);

// multiple trees can be registered with the Factory

TTree* sigTree = (TTree*)sigSrc->Get( "<YourSignalTreeName>" );

TTree* bkgTreeA = (TTree*)bkgSrc->Get( "<YourBackgrTreeName_A>" );

TTree* bkgTreeB = (TTree*)bkgSrc->Get( "<YourBackgrTreeName_B>" );

TTree* bkgTreeC = (TTree*)bkgSrc->Get( "<YourBackgrTreeName_C>" );

// Set the event weights per tree (these weights are applied in

// addition to individual event weights that can be specified)

Double_t sigWeight = 1.0;

Double_t bkgWeightA = 1.0, bkgWeightB = 0.5, bkgWeightC = 2.0;

// Register the trees

factory->AddSignalTree ( sigTree, sigWeight );

factory->AddBackgroundTree( bkgTreeA, bkgWeightA );

factory->AddBackgroundTree( bkgTreeB, bkgWeightB );

factory->AddBackgroundTree( bkgTreeC, bkgWeightC );

Code Example 6: Registration of signal and background ROOT trees read fromTFile sources. Overall signal and
background weights per tree can also be specified. TheTTree object may be replaced by aTChain.

Specifying training data in ROOT tree format with signal and background events being located in
the same tree:
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TTree* inputTree = (TTree*)source->Get( "<YourTreeName>" );

TCut signalCut = ...; // how to identify signal events

TCut backgrCut = ...; // how to identify background events

factory->SetInputTrees( inputTree, signalCut, backgrCut );

Code Example 7: Registration of a single ROOT tree containing the input data for signalandbackground, read from
aTFile source. TheTTree object may be replaced by aTChain. The cuts identify the event species.

Specifying training data in text format:

// Text file format (avaliable types: 'F' and 'I')

// var1/F:var2/F:var3/F:var4/F

// 0.21293 -0.49200 -0.58425 -0.70591

// ...

TString sigFile = "signal.txt"; // text file for signal

TString bkgFile = "background.txt"; // text file for background

Double_t sigWeight = 1.0; // overall weight for all signal events

Double_t bkgWeight = 1.0; // overall weight for all background events

factory->SetInputTrees( sigFile, bkgFile, sigWeight, bkgWeight );

Code Example 8: Registration of signal and background text files. Names and types of the input variables are given
in the first line, followed by the values.

3.1.2 Selecting variables and variable transformations

The variables in input trees that are used to train the classifiers are registered with the Factory
using theAddVariable method. It takes the variable name (string) and optionally its type ('F'

and'I' are supported), which can be particularly useful for discrete variables (use'I'). If no
type is given,'F' is used. The name must have a correspondence in the input ROOT tree or text
file. It is also possible to specify variable expressions, just as for theTTree::Draw command (the
expression is interpreted as aTTreeFormula).5

5There are restrictions in the use of array index specifications (true vector types in general): expressions like
"var1[0]" are not permitted.
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factory->AddVariable( "<YourVar1>", 'I' );

factory->AddVariable( "log(<YourVar2>)", 'F' );

factory->AddVariable( "<YourVar3>+<YourVar4>", 'F' );

Code Example 9: Declaration of variables used to train the classifiers. Each variable is specified by its name in the
training tree (or text file), and optionally a type ('F' for float and'I' for integer,'F' is default). Here,YourVar1 has
discrete values and is thus declared as an integer. Just as in theTTree::Draw command, it is also possible to specify
expressions of variables.

Individual events can be weighted, with the weights being a column or a function of columns of
the input data sets. To tell TMVA to use these weights in the classifier training use the following
command:

factory->SetWeightExpression( "<YourWeightExpression>" );

Code Example 10: Specification of individual weights applied to the training events. The expression must be a
function of variables present in the input data set.

Some of the classifiers normalise the input variables so thatmin/max(xi) = 0/1, ∀i = 1, . . . , nvar.
These are: Fisher discriminant, H-Matrix, the Clermont-Ferrand and MLP neural networks (cus-
tomizable). In the present release of TMVA this option cannot be customized (excepting the MLP
where the optionNormalize exists), so that the user must be aware of it when interpreting the
training results (weights).

3.1.3 Preparation of training and testing data

The input events that are handed to the Factory are internally copied and split into one training
and one testing ROOT tree. This guarantees a statistically independent evaluation of the classifiers
based on the test sample.6 The numbers of events used in both samples are specified by the user.
They must not exceed the entries of the input data sets. In case the user has provided a ROOT tree,
the event copy is accelerated by disabling all branches not used by the input variables.

It is possible to apply selection requirements (cuts) upon the input events. These requirements can
depend on any variable present in the input data sets, i.e., they are not restricted to the variables
used by the classifiers. The full command is as follows:

6A fully unbiased training and evaluation requires at least three statistically independent data sets. See comments in
Footnote10on page18.
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Option Values Description

SplitMode Random*, Alternate,

Block

Method for selecting signal and back-
ground events from the source trees

SplitSeed 100 Random seed whenSplitmode is
Random

NSigTrain 0 Number of training events from the sig-
nal sample

NBkgTrain 0 Number of training events from the
background sample

NSigTest 0 Number of test events from the signal
sample

NBkgTest 0 Number of test events from the back-
ground sample

V False Verbose flag

Option Table 2: Configuration options for the preparation of the internal training and testing trees (see also Code-
Example6 and comments in the text).

TCut preselectionCut = "<YourSelectionString>";

factory->PrepareTrainingAndTestTree( preselectionCut, "<options>" );

Code Example 11: Preparation of the internal TMVA training and test trees. The sizes (number of events) of these
trees are specified in the configuration option string. They can be set individually for signal and background. Note that
the preselection cuts are applied before the training and testing samples are selected, i.e., the tree sizes apply on the
selected events. It is also possible to choose among different methods to selcet the events entering the training and test
trees from the source trees. All options are described in Option-Table2. See also the text for further comments.

The numbers of signal and background events used for training and testing are specified in the
configuration string by the variablesNSigTrain, NBkgTrain, NSigTest andNBkgTest (e.g.,
"NSigTrain=5000:NBkgTrain=5000:NSigTest=4000:NBkgTest=5000"). The default value
(zero) signifies that all available events are taken, e.g., ifNSigTrain=5000 andNSigTest=0, and
if the total signal sample has 15000 events, then 5000 signal events are used for training and the
remaining 10000 events are used for testing. IfNSigTrain=0 andNSigTest=0, the signal sample
is split in half for training and testing. The same rules apply to background. Since zero is default,
not specifying anything corresponds to splitting the samples in halfs.

The optionSplitMode defines how the training and test samples are selected from the source trees.
With SplitMode=Random, events are selected randomly. WithSplitMode=Alternate, events
are chosen in alternating turns for the training and test samples as they occur in the source trees
until the desired numbers of training and testing events are selected. In theSplitMode=Block
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mode the firstNSigTrain andNBkgTrain events of the input data are selected for the training
sample, and the nextNSigTest andNBkgTest events comprise the test data. This is usually not
desired for data that contains varying conditions shifting over the range of the dataset. For the
Random selection mode, the seed of the random generator can be set. WithSplitSeed=0 the
generator returns a different random number series every time. The default of 100 results in the
same training and testing samples each time TMVA is run (as does any other seed apart from 0).

3.1.4 Booking the classifiers

All classifiers are booked via the Factory by specifying the classifier’s type, plus a unique name
given by the user, and a set of specific configuration options encoded in a string qualifier.7 If the
same type of classifier is booked several times with different options (which is useful to optimise
the configuration of a classifier), the specified names should be different, allowing to separate the
instances and their weight files. A booking example for the likelihood classifier is given in Code
Example12 below. Detailed descriptions of the configuration options are given in Secs.4 and5,
and the default booking commands for all classifiers are given in AppendixA. With the classifier
booking the initialization of the Factory is complete and no classifier-specific actions are left to
do. The Factory takes care of the subsequent training, testing and evaluation of the classifiers.

factory->BookMethod( TMVA::Types::kLikelihood, "LikelihoodD",

"!TransformOutput:Spline=2:NSmooth=5:\

Preprocess=Decorrelate" );

Code Example 12: Example booking of the likelihood classifier. The first argument is a unique type enumerator (the
avaliable types can be looked up insrc/Types.h), the second is a user-defined name which must be unique among all
booked classifiers, and the third a configuration option string that is specific to the classifier. For options that are not set
in the string default values are used. The syntax of the options should become clear from the above example. Individual
options are separated by a ’:’. Boolean variables can be set either explicitly asMyBoolVar=True/False, or just via
MyBoolVar/!MyBoolVar. All specific options are explained in Secs.4 and 5.

3.1.5 Training the classifiers

The training of the booked classifiers is invoked by the command:

factory->TrainAllMethods();

Code Example 13: Executing the classifier training via the Factory.

The training results are stored in the weight files which are saved in the directoryweights (which,

7In the TMVA package, a classifier is termedMethod. According to that terminology, the Factory has a function
BookMethod, and allmethodsare derived from the abstract classesIMethod andMethodBase.
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if not existing is created).8 The weight files are namedJobname ClassifierName.weights.

〈extension〉, where the job name has been specified at the instantiation of the Factory, and
ClassifierName is the unique classifier name specified in the booking command. Each classifier
writes two custom weight files, one in text format (extension istxt) where the classifier configu-
ration options, controls and training weights are stored, and another in ROOT format (extension is
root) containingTObject-derived objects (such as reference histograms for the likelihood clas-
sifier).

In addition to the classifier’s output valueyMVA , which is typically used to place a cut for the
classification of an event as either signal or background, or which could be used in a subsequent
likelihood fit, TMVA also provides signal and background PDFs,ŷS(B). The PDFs can be used to
derive classification probabilities for individual events. The techniques used to estimate the shapes
of the PDFs are those developed for the likelihood classifier (see Sec.5.2.2for details) and can be
customized individually for each method (the control options are given in Sec.5). The probability
for eventi to be of signal type is given by,

PMVA (i) =
fS · ŷS(i)

fS · ŷS(i) + (1− fS) · ŷB(i)
, (1)

wherefS = NS/(NS + NB) is the expected signal fraction, andNS(B) are the expected number of
signal (background) events (default isfS = 0.5).9

3.1.6 Testing the classifiers

The trained classifiers are applied to the testing data and provide scalar outputs according to which
an event can be classified as either signal or background. The classifier outputs are stored in the
test tree to which a column is added for each classifier. The tree is eventually written to the target
file and can be directly analysed in a ROOT session. The testing of all booked classifiers is invoked
by the command:

factory->TestAllMethods();

Code Example 14: Executing the validation (testing) of the MVA classifiers via the Factory.

3.1.7 Evaluating the classifiers

The Factory and data set classes of TMVA perform a preliminary assessment of the input variables
used by the classifiers, such as computing linear correlation coefficients and ranking the variables
according to their separation (see bullet below). The results are printed to standard output. Af-
ter training and testing, also the linear correlation coefficients among the classifier outputs are

8The default weight file directory name can be modified by setting the global configuration variableTMVA::
gConfig().ioNames.weightFileDir="myweights" from the user script.

9ThePMVA distributions may exhibit a somewhat peculiar structure with frequent narrow peaks. They are generated
by regions of classifier output values in whichŷS ∝ ŷB for whichPMVA becomes a constant.
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printed. Moreover, overlap matrices are derived (and printed) for signal and background that de-
termine the fractions of signal and background events that are equally classified by each pair of
classifiers. This is useful when two classifiers have similar performance, but a significant fraction
of non-overlapping events. In such a case a combination of the classifiers (e.g., in aCommittee
classifier) could improve the performance (this can be extended to any combination of any number
of classifiers).

The performance evaluation in terms of efficiency, background rejection, etc., of the trained and
tested classifiers is invoked by the command:

factory->EvaluateAllMethods();

Code Example 15: Executing the performance evaluation via the Factory.

The optimal classifier to be used for a specific analysis strongly depends on the problem and
no general recommendations can be given. To help with the choice TMVA computes a number of
benchmark quantities that assess the performance of the classifiers on the independent test sample.
These are

• Thesignal efficiency at three representative background efficiencies(the efficiency is equal
to 1 − rejection) obtained from a cut on the classifier output. Also given is the area of
the background rejection versus signal efficiency function (the larger the area the better the
performance).

• Theseparationof a classifiery, defined by the integral [6]

1
2

∫
(ŷS(y)− ŷB(y))2

ŷS(y) + ŷB(y)
dy , (2)

whereŷS andŷB are the signal and background PDFs ofy, respectively. The separation is
zero for identical signal and background shapes, and it is one for shapes with no overlap.

• The discriminationsignificanceof a classifier, defined by the difference between the clas-
sifier means for signal and background divided by the quadratic sum of their root-mean-
squares.

• Theaverage
∫

yµ(ŷS(y))dy of the signalµ-transform [7]. The µ-transform of a classifier
is the transformation that gives a uniform background distribution. In this way, the signal
distribution of theµ-transform can be directly compared among the various classifiers. The
stronger the peak towards one, the better is the discrimination.This quantity has been
removed from the standard evaluation output written by the Factory (for space reasons). It
can be retrieved for each method through an appropriate accessor.

The results of the evaluation are printed to standard output. In addition, smooth background
rejection/efficiency versus signal efficiency curves (and the signalµ-transform) are written to the
target ROOT file, and can be plotted using custom macros (see Sec.3.2).
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3.1.8 Overtraining

Overtraining occurs when a data mining problem has too few degrees of freedom, because too
many model parameters of a classifier were adjusted to too few data points. The sensitivity to
overtraining therefore depends on the classifier. For example, a Fisher discriminant can hardly
ever be overtrained, while, without the appropriate counter measures, boosted decision trees usu-
ally suffer from at least partial overtraining, owing to their large number of nodes. Overtraining
leads to a seeming increase in the classification performance over the objectively achievable one,
if measured on the training sample, and to an effective performance decrease when measured with
an independent test sample. A convenient way to detect overtraining and to measure its impact
is therefore to compare the classification results between training and test samples. Such a test is
performed by TMVA with the results printed to standard output.

Various classifier-specific solutions to counteract overtraining exist. For example, binned like-
lihood reference distributions are smoothed before estimating their shapes, or unbinned kernel
density estimators smear each training event before computing the PDF; neural networks steadily
monitor the convergence of the error estimator between training and test samples10 suspending the
training when the test sample has passed its minimum; the number of nodes in boosted decision
trees can be reduced by removing insignificant ones (“tree pruning”), etc.

3.2 ROOT macros for plotting training, testing and evaluation results

TMVA provides a simple GUI (TMVAGui.C, see Fig.1), which interfaces ROOT macros that
visualize the various steps of the training analysis. The macros are respectively located inTMVA/

macros/ (Sourceforge.net distribution) and$ROOTSYS/tmva/test/ (ROOT distribution), and
can also be executed from the command line. They are described in Tables1 and2. All plots
drawn are saved as png (or optionally eps, gif) files in the macro subdirectoryplots which, if not
existing, is created.

The binning and histogram boundaries for some of the histograms created during the training,
testing and evaluation phases are controlled via the singleton classTMVA::Config. They can be
modified as follows:

// To modify settings for the variable plotting, one can use the

// struct TMVA::Config::VariablePlotting

TMVA::gConfig().variablePlotting.timesRMS = 4.0;

TMVA::gConfig().variablePlotting.nbins1D = 60;

TMVA::gConfig().variablePlotting.nbins2D = 300;

Code Example 16: Modifying global parameter settings for the plotting of the discriminating input variables. The
values given are the TMVA defaults.

10 Proper training and validation requires three statistically independent data sets: one for the parameter optimisation,
another one for the overtraining detection, and the last one for the performance validation. In TMVA, the last two
samples have been merged to increase statistics. The (usually insignificant) bias introduced by this on the evaluation
results does not affect the analysis as far as cut efficiencies for the classifiers are independently validated with data.
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Macro Description

variables.C Plots the signal and background MVA input variables (training sam-
ple). The second argument sets the preprocessing type (type=0,
default, for no preprocessing, andtype=1,2 for decorrelated and
PCA-transformed variables, cf. Sec.4.1).

correlationscatter.C Plots superimposed scatters and profiles for all pairs of input vari-
ables used during the training phase (separate plots for signal and
background). As above, the second argument determines whether
the original (type=0, default) or preprocessed (type=1,2) input
variables are plotted.

correlations.C Plots the linear correlation matrices for the signal and background
training samples.

mvas.C Plots the classifier response distributions of the test sample for signal
and background. The second argument (HistType=1) allows to plot
the probability distributions of the classifiers for an equal number of
signal and background events (see Sec.3.1.5).

mvaeffs.C Signal and background efficiencies, obtained from cutting on the
classifier outputs, versus the cut value. Also shown are the signal pu-
rity and the signal efficiency times signal purity assuming an equal
number of signal and background events before cutting.

efficiencies.C Background rejection (second argumenttype=2, default), or back-
ground efficiency (type=1), versus signal efficiency for the classi-
fiers (test sample). The efficiencies are obtained by cutting on the
classifier outputs. This is traditionally the best plot to assess the
overall discrimination performance (ROC curve).

Table 1: List of available ROOT macros for the representation of the TMVA training and evaluation results. All macros
take as first argument the name of the ROOT file containing the histograms (default isTMVA.root).

3.3 The Reader

After training and evaluation, the most performing classifiers are selected and used to classify
events in data samples with unknown signal and background composition. An example of how this
application phaseis carried out is given inTMVA/macros/TMVApplication.C (Sourceforge.net)
and$ROOTSYS/tmva/test/TMVApplication.C (ROOT). Analogously to the Factory, the com-
munication between the user application and the classifiers is interfaced by the TMVAReader,
which is created by the user:

TMVA::Reader* reader = new TMVA::Reader();

Code Example 17: Instantiating a Reader class object.
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Macro Description

likelihoodrefs.C Plots the reference PDFs of all input variables for the likelihood
classifier and compares it to original distributions obtained from the
training sample.

network.C Draws the TMVA-MLP architecture including weights after training
(does not work for the other ANNs).

annconvergencetest.C Plots the MLP error-function convergence versus the training epoch
for training and test events (does not work for the other ANNs).

BDT.C(i) Draws theith decision tree of the trained forest (default isi=1).
The second argument is the weight file that contains the full architec-
ture of the forest (default isweights/MVAnalysis BDT.weights.

txt).

mvarefs.C Plots the classifier PDFs used to compute the probability response,
and compares it to the original distributions.

Table 2: List of ROOT macros representing specific classifiers, and require that these classifiers have been included
in the training. All macros take as first argument the name of the ROOT file containing the histograms (default is
TMVA.root).

3.3.1 Specifying input variables

The user registers the names of the input variables with the Reader. They are required to be the
same (and in the same order) as the names used for training (this requirement is not actually
mandatory, but enforced to ensure the consistency between training and application). Together
with the name is given the address of a local variable, which carries the updated input values
during the event loop.

Float_t localVar1, localVar2, localVar3;

reader->AddVariable( "<YourVar1>", &localVar1 );

reader->AddVariable( "log(<YourVar2>)", &localVar2 );

reader->AddVariable( "<YourVar3>+<YourVar4>", &localVar3 );

Code Example 18: Declaration of the variables and references used as input to the classifiers. The order and naming
of the variables must be consistent with the ones used for the training. The local variables are updated during the event
loop, and through the references their values are known to the classifiers.

3.3.2 Booking selected classifiers

The classifier(s) found to be most performing are booked with the Reader, using the weight files
from the preceeding training job:
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reader->BookMVA( "<YourClassifierName>", "<WeightFile.weights>" );

Code Example 19: Booking a multivariate classifier. The first argument is a user defined name to distinguish between
classifiers (it does not need to be the same name as for training, although this could be a useful choice). The true type
of the classifier and its full configuration are read from the weight file specified in the second argument.

3.3.3 Requesting the classifier output

Within the event loop, the response valueyMVA of a particular classifier for a given set of input
variables (that are computed by the user) is obtained with the commands:

localVar1 = treeVar1;

localVar2 = TMath::Log(treeVar2);

localVar3 = treeVar3 + treeVar4;

Double_t mvaValue = reader->EvaluateMVA( "<YourClassifierName>" );

Code Example 20: Updating the local variables for an event, and obtaining the corresponding classifier output.

The classifier outputyMVA may then for example be cut on to increase the signal purity of the
sample (the achievable purities can be read off the evaluation results obtained during the test
phase), or it could enter a maximum-likelihood fit, etc.

The rectangular cut classifier is special since it returns a binary answer for a given set of input
variables and cuts. The user must specify the desired signal efficiency to define the working point
according to which the Reader will choose the cuts:

Bool_t passed = reader->EvaluateMVA( "Cuts", signalEfficiency );

Code Example 21: For the cut classifier, the second parameter gives the desired signal efficiency according to which
the cuts are chosen. The return value is 1 for passed and 0 for retained.

Instead of the classifier response values, one may also retrieve the ratio (1) from the Reader, which,
if properly normalised to the expected signal fraction in the sample, corresponds to a probability.
The corresponding command is:

Double_t pSig = reader->GetProba( "<YourClassifierName>", sigFrac );

Code Example 22: Requesting the event’s signal probability from a classifier. The signal fraction is the parameterfS
in Eq. (1).
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3.4 Which classifier should I use for my problem?

There is obviously no common answer to that question. To guide the user, we have attempted an
assessment of various relevant classifier properties in Table1. Simplicity is a virtue, but only if it is
not at the expense of discrimination power. Robustness with respect to overtraining could become
an issue when the training sample is scarce. Some methods require more attention than others in
this regard. For example, boosted decision trees are particularly vulnerable to overtraining if used
without care. To circumvent overtraining a problem-specific adjustment of the pruning strength
parameter is required.

To assess whether a linear discriminant analysis (LDA) could be sufficient for a classification
problem, the user is advised to analyse the correlations among the discriminating variables by
inspecting scatter and profile plots (it is not enough to print the correlation coefficients, which by
definition are linear only). Using an LDA greatly reduces the number of parameters to be adjusted
and hence allow smaller training samples. For problems that require a high degree of optimisation
and allow to form a large number of input variables, complex nonlinear methods like neural net-
works, boosted decision trees, RuleFit and a support vector machine are more appropriate.

For RuleFit we emphasize that the TMVA implementation differs from Friedman-Popescu’s orig-
inal code [19], with (yet) better robustness and out-of-the-box performance for the latter version.
In particular, the behaviour of the original code with respect to nonlinear correlations and the curse
of dimensionality would have merited two stars. We also point out that the excellent performance
for by majority linearly correlated input variables is achieved somewhat artificially by adding a
Fisher-like term to the RuleFit classifier (this is true for both implementations, cf. Sec.5.8).

For the newly included support vector machine (Sec.5.9) we recall that this is still a beta version,
which has not been sufficiently tested yet in particular for what concerns it’s performance. User
feedback is appreciated and encouraged.

4 Data Preprocessing

A certain number of tools are centrally available in TMVA and can be accessed by all multivariate
classifiers. For example, it is possible to preprocess the data prior to presenting it to the classi-
fiers. Preprocessing can be useful to reduce correlations among the discriminating variables, to
transform their shapes, or to accelerate the response time of a classifier.

4.1 Transforming input variables

Currently two preprocessing transformations are implemented in TMVA: decorrelation via the
square-root of the covariance matrix and via a principal component decomposition. Technically,
any transformation of the input variables is performed “on the fly” when the event is requested
from the centralDataSet class. Each classifier carries a variable transformation type together
with a pointer to the object of its transformation class which is owned by theDataSet. If no
preprocessing is requested, an identity transform is applied. TheDataSet registers the requested
transformations and takes care not to recreate an identical transformation object (if requested)
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CLASSIFIERS

CRITERIA Cuts Likeli-
hood

PDE-
RS

H-
Matrix

Fisher ANN BDT Rule-
Fit

SVM

Perfor-
None/linear
correlations

? ?? ? ? ?? ?? ? ?? ?

mance Nonlinear
correlations

◦ ◦ ? ◦ ◦ ?? ?? ? ??

Training ◦ ?? ?? ?? ?? ? ◦ ? ◦
Speed

Response ?? ?? ◦ ?? ?? ?? ? ? ?

Robust- Overtraining ?? ? ? ?? ?? ? ◦ ? ??
ness Weak variables ?? ? ◦ ?? ?? ? ?? ? ?

Curse of dimensionality ◦ ?? ◦ ?? ?? ? ? ?

Transparency ?? ?? ? ?? ?? ◦ ◦ ◦ ◦

Table 1: Assessment of classifier properties. The symbols stand for the attributes “good” (??), “OK” ( ?) and “bad” (◦).
“Curse of dimensionality” refers to the “burden” of required increase in training statistics and processing time when
adding more input variables. See also comments in text.

during the training phase. Hence if two classifiers wish to apply the same transformation, a single
object is shared between them. Each classifier writesits transformation into its weight file once the
training has converged. For testing and application of a classifier, the transformation is read from
the weight file and a corresponding transformation object is created. Here each classifier owns its
transformation so that no sharing of potentially different transformation objects occurs (they may
have been obtained with different training data and/or under different conditions). A schematic
view of the variable transformation interface used in TMVA is drawn in Fig.7.

4.1.1 Variable decorrelation

A drawback of, for example, the projective likelihood classifier (see Sec.5.2) is that it ignores
correlations among the discriminating input variables. Because in most realistic use cases this is
not an accurate conjecture it leads to performance loss. Also other classifiers, such as rectangular
cuts or decision trees, and even multidimensional likelihood approaches underperform in presence
of variable correlations.

Linear correlations, measured in the training sample, can be taken into account in a straightforward
manner through computing the square-root of the covariance matrix. The square-root of a matrix
C is the matrixC ′ that multiplied with itself yieldsC: C = (C ′)2. TMVA computes the square-
root matrix by means of diagonalising the (symmetric) covariance matrix

D = ST CS ⇒ C ′ = S
√

DST , (3)

whereD is a diagonal matrix, and where the matrixS is symmetric. The linear decorrelation of
the input variables is then obtained by multiplying the initial variable tuple by the inverse of the
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Figure 7: Schematic view of the variable transformation interface implemented in TMVA. Each concrete classi-
fier derives fromMethodBase (which is interfaced byIMethod), which holds a protected member object of type
VariableTransformBase. The construction of the concrete variable transformation object proceeds inMethodBase
according to the transformation method requested in the option string. The events used by the classifiers for training,
testing and final classification analysis are read via an API of theVariableTransformBase class, which itself reads
the events from theDataSet. TheDataSet fills the current values into the reserved event addresses (the event content
may either stem from the training or testing trees, or is set by the user’s application via theReader for the final classi-
fication analysis). TheVariableTransformBase interface class ensures the proper transformation of all events seen
by the classifiers.

square-root matrix.

The transformations are performed separately for signal and background events because their cor-
relation patterns are usually different.11 The decorrelation is complete only for linearly correlated
and Gaussian distributed variables. In real-world use cases this is not often the case, so that
sometimes only little additional information can be recovered by the decorrelation procedure. For
highly non-linear problems the performance may even become worse with linear decorrelation.
Non-linear classifiers without prior variable decorrelation should be used in such cases.

4.1.2 Principal component decomposition

Principal component decomposition or principal component analysis (PCA) as presently applied
in TMVA is not very different from the above linear decorrelation. In common words, PCA is
a linear transformation that rotates a sample of data points such that the maximum variability is
visible. It thus identifies the most important gradients. In the PCA-transformed coordinate system,
the largest variance by any projection of the data comes to lie on the first coordinate (denoted the
first principal component), the second largest variance on the second coordinate, and so on. PCA
can thus be used to reduce the dimensionality of a problem (initially given by the number of
input variables) by removing dimensions with insignificant variance. This corresponds to keeping
lower-order principal components and ignoring higher-order ones. This latter step however goes

11Different transformations for signal and background events are only useful for methods that explicitly distinguish
signal and background hypotheses. This is the case for the likelihood and PDERS classifiers. For all other methods the
user must choose which transformation to use.



4.2 Binary Search Trees 25

beyond straight variable transformation as performed in the preprocessing steps discussed here (it
rather represents itself a full classifier). Hence all principal components are retained here.

The tuplesxPC
U (i) = (xPC

U,1(i), . . . , x
PC
U,nvar

(i)) of principal components of a tuple of input variables
x(i) = (x1(i), . . . , xnvar(i)), measured for the eventi for signal (U = S) and background (U =
B), are obtained by the transformation

xPC
U,k(i) =

nvar∑
`=1

(xU,`(i)− xU,`) v
(k)
U,` , ∀k = 1, nvar . (4)

The tuplesxU andv(k)
U are the sample means and eigenvectors, respectively. They are computed

by the ROOT classTPrincipal. The matrix of eigenvectorsVU = (v(1)
U , . . . ,v(nvar)

U ) obeys the
relation

CU · VU = DU · VU , (5)

whereC is the covariance matrix of the sampleU , andDU is the tuple of eigenvalues. As for
the preprocessing described in Sec.4.1.1, the transformation (4) eliminates linear correlations for
Gaussian variables.

4.2 Binary Search Trees

When frequent iterations over the training sample need to be performed, it is helpful to sort the
sample before using it. Event sorting inbinary treesis employed by the classifiers rectangular cut
optimisation and PDERS. Efficiently searching for and counting events that lie inside a multidi-
mensional volume spanned by the discriminating input variables is accomplished with the use of
a binary tree search algorithm [8].12 It is realised in the classBinarySearchTree, which inherits
from BinaryTree, and which is also employed to grow decision trees (cf. Sec.5.7). The amount
of computing time needed to sortN events into the tree is [9] ∝

∑N
i=1 ln2(i) = ln2(N !) '

N ln2 N . Finding the events within the tree which lie in a given volume is done by comparing
the bounds of the volume with the coordinates of the events in the tree. Searching the tree once
requires a CPU time that is∝ ln2 N , compared to∝ Nnvar without prior event sorting.

5 The TMVA Classifiers

All TMVA classifying methods inherit fromMethodBase, which implements basic functionality
like the interpretation of common configuration options, the interaction with the training and test

12The following is extracted from Ref. [9] for a two-dimensional range search example. Consider a random sequence
of signal eventsei(x1, x2), i = 1, 2, . . . , which are to be stored in a binary tree. The first event in the sequence becomes
by definition the topmost node of the tree. The second evente2(x1, x2) shall have a largerx1-coordinate than the first
event, therefore a new node is created for it and the node is attached to the first node as the right child (if thex1-
coordinate had been smaller, the node would have become the left child). Evente3 shall have a largerx1-coordinate
than evente1, it therefore should be attached to the right branch belowe1. Sincee2 is already placed at that position,
now thex2-coordinates ofe2 ande3 are compared, and, sincee3 has a largerx2, e3 becomes the right child of the node
with evente2. The tree is sequentially filled by taking every event and, while descending the tree, comparing itsx1 and
x2 coordinates with the events already in place. Whetherx1 or x2 are used for the comparison depends on the level
within the tree. On the first level,x1 is used, on the second levelx2, on the third againx1 and so on.
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data sets, I/O operations and common performance evaluation calculus. The functionality each
classifier is required to implement is defined in the abstract interfaceIMethod.13 Each classifier
provides a function that creates a rank object (of typeRanking), which is an ordered list of the
input variables prioritized according to criteria specific to that classifier.

If the optionCreateMVAPdfs is set TMVA creates signal and background PDFs from the corre-
sponding classifier response distributions using the training sample (cf. Sec.3.1.5). The binning
and smoothing properties of the underlying histograms can be customized via controls imple-
mented inMethodBase (so that they are common to all classifiers). They are summarised in in
Option Table3.

Option Values Description

VarTransform None*, Decorrelate, PCA Transformation method for input vari-
ables

VarTransformType Signal*, Background Data type used to derive variable
transformation

VerboseLevel Debug, Verbose, Info*,

Warning, Error, Fatal

Minimum verbosity level

V False Verbose flag, if set toTrue the minimum
verbosity level isVerbose

H False Help flag

CreateMVAPdfs False Create PDFs for classifier outputs

NbinsMVAPdf 60 Number of bins in histograms used to
build the classifier PDFs

NsmoothMVAPdf 2 Number of smoothing iterations

Option Table 3: Configuration options common to all classifiers (but which can be controlled individually for each
classifier). Values given are defaults. If predefined categories exist, the default category is marked by a ’*’. The lower
options in the table control the PDF fitting of the classifiers.

The following sections describe the classifiers implemented in TMVA. For each classifier we pro-
ceed according to the following scheme: (i) a brief introduction, (ii) the description of the booking
options required to configure the classifier, (iii) a description of the the classifier and TMVA im-
plementation specifications, (iv) the properties of the variable ranking, and (v) a few comments
on performance, favourable (and disfavoured) use cases, and comparisons with other classifiers.

13Two constructors are implemented for each classifier: one that creates the classifier for a first time for training with
a configuration (“option”) string among the arguments, and another that recreates a classifier from an existing weight
file. The use of the first constructor is demonstrated in the example macroTMVAnalysis.C, while the second one is
employed by the Reader inTMVApplication.C. Other functions implemented by each classifier are:Train (called for
training),Write/ReadWeightsToStream (I/O of specific training results),WriteMonitoringHistosToFile (addi-
tional specific information for monitoring purposes) andCreateRanking (variable ranking).
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5.1 Rectangular cut optimisation

The simplest and most common classifier for selecting signal events from a mixed sample of signal
and background events is the application of an ensemble of rectangular cuts on discriminating
variables. Unlike all other classifiers in TMVA, the cut classifier only returns a binary response
(signalor background). The optimisation of cuts performed by TMVA maximises the background
rejection at given signal efficiency, and scans over the full range of the latter quantity. Dedicated
analysis optimisation for which, e.g., the signalsignificanceis maximised requires the expected
signal and background yields to be known before applying the cuts. This is not the case for a
multi-purpose discrimination and hence not used by TMVA. However, the cut ensemble leading to
maximum significance corresponds to a particular working point on the efficiency curve, and can
hence be easily derived after the cut optimisation scan has converged.14

TMVA implements three methods for cut optimisation: Monte Carlo (MC) sampling, a Genetic
Algorithm (GA), and Simulated Annealing (SA, which is however depreciated for the present
release, since it has not yet been sufficiently validated).15 Attempts to use MINUIT (Simplex
or Migrad) have not shown satisfactory results, with frequently failing fits because of the non-
unique and non-global solution space. For most applications GA should be the most performing
optimisation method.

The training events are sorted inbinary treesprior to the optimisation, which significantly reduces
the computing time required to determine the number of events passing a given cut ensemble (cf.
Sec.4.2).

5.1.1 Booking options

The rectangular cut optimisation is booked through the Factory via the command:

factory->BookMethod( Types::kCuts, "Cuts", "<options>" );

Code Example 23: Booking of the cut optimisation classifier: the first argument is a predefined enumerator, the
second argument is a user-defined string identifier, and the third argument is the configuration options string. Individual
options are separated by a ’:’. See Sec.3.1.4for more information on the booking.

14Assuming a large enough number of events so that Gaussian statistics is applicable, the significance for a signal is
given byS = εSNS/

√
εSNS + εB(εS)NS , whereεS(B) andNS(B) are the signal and background efficiencies for a cut

ensemble and the event yields before applying the cuts, respectively. The background efficiencyεB is expressed as a
function ofεS using the TMVA evaluation curve obtained form the test data sample. The maximum significance is then
found at the root of the derivative

dS
dεS

= NS

2εB(εS)NB + εS
(
NS − dεB(εS)

dεS
NB

)
2 (εSNS + εB(εS)NB)3/2

= 0 , (6)

which depends on the problem.
15We note that cut optimisation is not a genuine multivariate analyser method, because no combination of the vari-

ables is achieved. Neither does a cut on one variable depend on the value of another variable (like it is the case for
Decision Trees), nor can a, say, background-like value of one variable in a signal event be counterweighed by signal-like
values of the other variables (like it is the case for the likelihood method).
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The configuration options for the various cut optimisation techniques are given in Option Table4.

5.1.2 Description of the classifier and its implementation

The cut optimisation analysis proceeds by first building binary search trees for signal and back-
ground. For each variable, statistical properties like mean, root-mean-squared (RMS), variable
ranges are computed to guide the search for optimal cuts. Cut optimisation requires an estima-
tor that quantifies the goodness of a given cut ensemble. Maximising this estimator minimises
(maximises) the background efficiency,εB (background rejection,rB = 1 − εB) for each signal
efficiencyεS .

All three optimisation methods act on the assumption that one minimum and one maximum re-
quirement on each variable is sufficient to optimally discriminate signal from background (i.e.,
the signal is clustered). If this is not the case, the variables must be transformed prior to the cut
optimisation to make them compliant with this assumption.

For a given cut ensemble the signal and background efficiencies are derived by counting the train-
ing events that pass the cuts and dividing the numbers found by the original sample sizes. The
resulting efficiencies are therefore rational numbers that may exhibit visible discontinuities when
the number of training events is small and an efficiency is either very small or very large. Another
way to compute efficiencies is to parametrise the probability density functions of all input vari-
ables and to thus achieve continuous efficiencies for any cut value. Note however that this method
expects the input variables to be uncorrelated! Nonvanishing correlations would lead to incorrect
efficiency estimates and hence to underperforming cuts. The two methods are chosen with the
optionEffMethod set toEffSel andEffPDF, respectively.

Monte Carlo sampling

The simplest and most straightforward, albeit somewhat inefficient method to solve the optimi-
sation problem is to randomly sample the minimum and maximum requirements for all discrim-
inating variables. Each sample corresponds to a point in the(εS , rB) plane. TheεS dimension is
(finely) binned and a cut sample is retained if itsrB value is larger than the value already contained
in that bin. This way a reasonably smooth efficiency curve can be obtained if the number of input
variables is not too large (the required number of MC samples grows with powers of2nvar).

Prior information on the variable distributions can be used to reduce the number of cuts that need
to be sampled. For example, if a discriminating variable follows Gaussian distributions for sig-
nal and background, with equal width but a larger mean value for the background distribution,
there is no useful minimum requirement (other than−∞) so that a single maximum requirement
is sufficient for this variable. To instruct TMVA to remove obsolete requirements, the option
MC Var[i]Prop must be used, where[i] indicates the counter of the variable (following the or-
der in which they have been registered with the Factory, beginning with 0) must be set to either
FMax or FMin. TMVA is capable of automatically detecting which of the requirements should
be removed. Use the optionMC Var[i]Prop=FSmart (where again[i] must be replaced by the
appropriate variable counter, beginning with 0). Note that in many realistic use cases the mean
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Option Values Description

Method MC, GA, SA Optimisation method

EffMethod EffSel, EffPDF Selection method

MC NRandCuts 100000 Monte Carlo sample size

MC VarProp[i] NotEnforced*,

FMax, FMin,

FSmart,

FVerySmart

Variable properties that can be used to
inject prior information on cut bound-
aries per variable[i]; if no index
is given, the selection applies to all
variables

GA nsteps 30 Stop if no fitness increase by at
least GA convCrit during previous
GA nsteps generations

GA convCrit 0.0001 seeGA nsteps

GA cycles 3 Number of optimisation cycles

GA popSize 100 Number of individuals in population

GA SC steps 10 If an improvement occurred in
GA SC rate steps of a period of the
lastGA SC steps steps, a cut-variation
factor is multiplied byGA SC factor

GA SC rate 5 seeGA SC steps

GA SC factor 0.95 seeGA SC steps

SA MaxCalls 5000000 Maximum number of minimisation
calls

SA TemperatureGradient 0.7 Temperature gradient

SA UseAdaptiveTemperature True Use adaptive temperature

SA InitialTemperature 100000 Initial temperature

SA MinTemperature 500 Minimum temperature

SA NFunLoops 5 Number of function loops

SA Eps 1.0e-04 Minimum improvement in previous
step required to continue annealing

SA NEps 4 Number of functions to satisfySA Eps

Option Table 4: Configuration options for cut optimisation. Values given are defaults. If predefined categories exist,
the default category is marked by a ’*’. The options in Option Table3 can also be configured. The prefixesMC (GA, SA)
denote options that set properties of the Monte Carlo (Genetic Algorithm, Simulated Annealing) optimisation procedure
(selected by the optionMethod).
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values between signal and background of a variable are indeed distinct, but the background can
have large tails. In such a case, the removal of a requirement is inappropriate, and would lead to
underperforming cuts.

Genetic Algorithm

Genetic Algorithm is a technique to find approximate solutions to optimisation or search prob-
lems. The problem is modeled by a group (population) of abstract representations (genomes) of
possible solutions (individuals). By applying means similar to processes found in biological evo-
lution the individuals of the population should evolve towards an optimal solution of the problem.
Processes which are usually modeled in evolutionary algorithms — of which Genetic Algorithms
are a subtype — are inheritance, mutation and “sexual recombination” (also termedcrossover).

Apart from the abstract representation of the solution domain, afitnessfunction must be defined.
Its purpose is the evaluation of the goodness of an individual. The fitness function is problem
dependent. In cut optimisation for instance, the quality of a rectangular cut is given by good back-
ground rejection combined with high signal efficiency. It either returns a value representing the
individual’s goodness or it compares two individuals and indicates which of them performs better.

The Genetic Algorithm proceeds as follows:

• Initialization: A starting population is created. Its size depends on the problem to be solved.
Each individual belonging to the population is created by randomly setting the parameters
(cuts) of the abstract representation (variables), thus producing a point (cut ensemble) in the
solution domain of the initial problem.

• Evaluation: Each individual is evaluated using the fitness function.

• Selection: Individuals are kept or discarded as a function of their fitness. Several selection
procedures are possible. The simplest one is to separate out the worst performing fraction
of the population. Another possibility is to decide on the individual’s survival by assigning
probabilities that depend on the individual’s performance compared to the others.

• Reproduction: The surviving individuals are copied, mutated and crossed-over until the
initial population size is reached again.

• Termination: The evaluation, selection and reproduction steps are repeated until a maximum
number of cycles is reached or an individual satisfies a maximum-fitness criterion. The best
individual is selected and taken as solution to the problem.

The TMVA Genetic Algorithm implementation provides a certain number of controls that can be
set through the options (cf. Table4). The parameterGA popSize determines the number of in-
dividuals (cut ensembles) which are created at each generation of the Genetic Algorithm. At the
initialization, all parameters of all individuals are chosen randomly. The individuals are evaluated
in terms of their background rejection and signal efficiency. Each cut ensemble giving an improve-
ment in the background rejection for a specific signal efficiency bin is immediately stored. Each
individual’s fitness is assessed, where the fitness is largely determined by the difference of the best
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found background rejection for a particular bin of signal efficiency and the value produced by the
current individual. The same individual that has at one generation a very good fitness will have
only average fitness at the following generation. This forces the algorithm to focus on the region
where the potential of improvement is the highest.

Individuals with a good fitness are selected to produce the next generation. The new individuals
are created by crossover and mutated afterwards. Mutation changes some values of some param-
eters of some individuals randomly following a Gaussian distribution function. The width of the
Gaussian can be altered by the parameterGA SC factor. The current width is multiplied by this
factor when within the lastGA SC steps generations more thanGA SC rate improvements have
been obtained. If there wereGA SC rate improvements the width remains unchanged. Were there,
on the other hand, less thanGA SC rate improvements, the width is divided byGA SC factor.
This allows to influence the speed of searching through the solution domain.

The cycle of evaluating the fitness of the individuals of a generation and producing a new genera-
tion is repeated until the improvement within the lastGA nsteps has been less thanGA convCrit

in terms of background rejection. The minimisation is then considered to have converged. The
whole cycle from initialization over evaluation of fitness, selection, reproduction and determining
the improvement is repeatedGA cycles times. The Genetic Algorithm has finished.

Simulated Annealing

As the Genetic Algorithm, Simulated Annealing attempts to solve a minimisation problem with
manifold discrete or continuous, local or global solutions. For example, when slowly cooling
down (“annealing”) a metal its atoms move towards a state of lowest energy, while for fast an-
nealing the atoms tend to freeze in intermediate higher energy states. For infinitesimal annealing
activity the system will always converge in its global energy minimum [10].

This physical principle can be simulated to achieve slow, but correct convergence of an optimisa-
tion problem with multiple solutions. Recovery out of local minima is achieved by assigning the
probability [11]

p(∆E) ∝ exp
(
−∆E

T

)
, (7)

to a perturbation of the parameters (the cuts) leading to a shift∆E in the energy of the system. The
probability of such perturbations to occur decreases with the size of a positive energy coefficient of
the perturbation, and with the ambient temperature (T ). The TMVA implementation of Simulated
Annealing uses adaptive adjustment of the perturbation and temperature gradients.

Although the Simulated Annealing algorithm is technically functional, it has not yet been optimised
so that its use is depreciated until further notice.

5.1.3 Ranking

The present implementation of Cuts does not provide a ranking of the input variables.
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5.1.4 Performance

The Genetic Algorithm currently provides the best cut optimisation convergence. However, it is
found that with rising number of discriminating input variables the goodness of the solution found
(and hence the smoothness of the background-rejections versus signal efficiency plot) deteriorates
quickly. Rectangular cut optimisation should therefore be reduced to the variables that have the
largest discriminating power.

If variables with excellent signal from background separation exist, applying cuts can be quite
competitive with more involved classifiers. Cuts are known to underperform in presence of strong
non-linear correlations and/or if several weakly discriminating variables are used. In the latter
case, a true multivariate combination of the information will be rewarding.

5.2 Projective likelihood estimator (PDE approach)

The method of maximum likelihood consists of building a model out of probability density func-
tions (PDFs) that reproduces the input variables for signal and background. For a given event,
the likelihood for being of signal type is obtained by multiplying the signal probability densities
of all input variables, and normalising this by the sum of the signal and background likelihoods.
Correlations among the variables are ignored.

5.2.1 Booking options

The likelihood classifier is booked via the command:

factory->BookMethod( Types::kLikelihood, "Likelihood", "<options>" );

Code Example 24: Booking of the (projective) likelihood classifier: the first argument is the predefined enumera-
tor, the second argument is a user-defined string identifier, and the third argument is the configuration options string.
Individual options are separated by a ’:’. See Sec.3.1.4for more information on the booking.

The likelihood configuration options are given in Option Table5.

5.2.2 Description of the classifier and its implementation

The likelihood ratioyL(i) for eventi is defined by

yL(i) =
LS(i)

LS(i) + LB(i)
, (8)

where

LS(B)(i) =
nvar∏
k=1

pS(B),k(xk(i)) , (9)
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Option Values Description

Spline 0, 1, 2*, 3, 5 Degree of splines used to interpolate the ref-
erence histograms

NSmooth 1 Number of smoothing iterations for the input
histograms

NSmoothSig[i] -1 Same as above per reference histogram for
signal input variables; if no index given the
setting applies to all signal input histograms;
if set to -1,NSmooth is used

NSmoothBkg[i] -1 Same as above per reference histogram for
backgr. input variables

NAvEvtPerBin 50 Average number of events per bin in each
reference histogram (to allow an adaptive
number of bins)

NAvEvtPerBinSig[i] -1 Same as above per reference histogram for
signal input variables; (if no index given the
setting applies to all signal reference his-
tograms; if set to -1,NAvEvtPerBin is used

NAvEvtPerBinBkg[i] -1 Same as above per reference histogram for
backgr. input variables

UseKDE False Use kernel density estimator (KDE) instead
of spline functions

KDEtype Gauss* KDE kernel type (currently only Gauss)

KDEiter Nonadaptive*,

Adaptive

Nonadaptive or adaptive number of itera-
tions (see text)

KDEFineFactor 1 Finetuning factor for the adaptive KDE

KDEborder None*, Renorm,

Mirror

Method for correcting boundary/border
effects

TransformOutput False Transform likelihood output by inverse sig-
moid function

Option Table 5: Likelihood configuration options. Values given are defaults. If predefined categories exist, the default
category is marked by a ’*’. The upper section describes the options for the spline interpolation and smoothing of
histograms, while the lower section configures the unbinned kernel density estimators. Some of the options, marked by
’[i]’, can be individually set for each input variable. The options in Option Table3 can also be configured.
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and wherepS(B),k is the signal (background) PDF for thekth input variablexk. The PDFs are
normalised

+∞∫
−∞

pS(B),k(xk)dxk = 1 , ∀k. (10)

It can be shown that in absence of model inaccuracies (such as correlations between input vari-
ables not removed by the decorrelation procedure, or an inaccurate probability density model), the
ratio (8) provides optimal signal from background separation for the given set of input variables.

Since the parametric form of the PDFs is generally unknown, the PDF shapes are empirically ap-
proximated from the training data by nonparametric functions, which can be polynomial splines
of various degrees fitted to histograms or unbinned kernel density estimators (KDE), as discussed
below.

A certain number of primary validations are performed during the PDF creation, the results of
which are printed to standard output. Among these are the computation of aχ2 estimator between
all nonzero bins of the original histogram and its PDF, and a comparison of the number of out-
liers (in sigmas) found in the original histogram with respect to the (smoothed) PDF shape, with
the statistically expected one. The fidelity of the PDF estimate can be also inspected visually by
executing the macrolikelihoodrefs.C (cf. Table2).

Nonparametric PDF parameterisation using spline functions

Polynomial splines are fitted to binned histograms according to the following procedure.

1. For each input variable, a histogram is filled with the training data. The upper and lower
bounds of the histogram coincide with the limits found in the data (or they are equal to [0,1]
if the input variables are normalised). The (equidistant) binning is chosen so that the average
number of entries per bin corresponds to the number (NAvEvtPerBin) defined in the option
string.

2. The histogram is smoothedNSmooth times usingTH1::SmoothArray(.), which is an im-
plementation of the algorithm 353QH twice [12]. The appropriate number of smoothing
iterations depends on the shape of the histogram. Since smoothing tends to even out all
structures from the histogram, narrow structures (e.g., peaks) support less smoothing than
broad ones.

3. The smoothed histogram is used to construct an object of the classPDF, where it is cloned
and the bins are fit to polynomial interpolation functions, (splines – derivatives of the ROOT
classTSpline). The available splines are: degree 0 (the original histogram is kept), which
is useful for discrete variables; degree 1 (linear), 2 (quadratic), 3 (cubic) and degree 5.
Splines of degree two or above render the PDF continuous and differentiable in all points
excluding the interval borders, which in turn ensures the same property for the likelihood
ratio (8). Since cubic (and higher) splines equalize the first and second derivatives at the
spline transitions, the resulting curves, although mathematically smooth, can wiggle in quite
unexpected ways. Furthermore, there is no local control of the spline: moving one control
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point (bin) causes the entire curve to change, not just the part near the control point. To
ensure a safe interpolation, quadratic splines are used by default.

4. To speed up the numerical access to the probability densities, the spline functions are stored
into a finely binned (104 bins) histogram, where adjacent bins are interpolated by a linear
function. Only after this step, the PDF is normalised according to (10).

Nonparametric PDF parameterisation using kernel density estimators

Another type of nonparametric approximation of the PDFs is achieved with kernel density esti-
mators (KDE). As opposed to splines KDEs are obtained from unbinned data. The idea of the
approach is to estimate the shape of a PDF by the sum oversmearedtraining events. One then
finds for a PDFp(x) of a variablex [13]

p(x) =
1

N h

N∑
i=1

K

(
x− xi

h

)
=

1
N

N∑
i=1

Kh(x− xi) , (11)

whereN is the number of training events,Kh(t) = K(t/h)/h is the kernel function, andh is the
bandwidthof the kernel (also termed thesmoothing parameter). Currently, only a Gaussian form
of K is implemented, where the exact form of the kernel function is of minor relevance for the
quality of the shape estimation. More important is the choice of the bandwidth.

The KDE smoothing can be applied in either nonadaptive (NA) or adaptive form (A), the choice
of which is controlled by the optionKDEiter. In the nonadaptive case the bandwidthhNA is kept
constant for the entire training sample. As optimal bandwidth can be taken the one that minimizes
theasymptotic mean integrated square error(AMISE). For the case of a Gaussian kernel function
this leads to [13]

hNA =
(

4
3

)1/5

σxN−1/5 , (12)

whereσx is the RMS of the variablex.

The so calledsample point adaptivemethod uses as input the result of the nonadaptive KDE,
but also takes into account the local event density. The adaptive bandwidthhA then becomes a
function ofp(x) [13]

hA(x) =
hNA√
p(x)

. (13)

The adaptive approach improves the shape estimation in regions with low event density. On the
contrary, in regions with high event density it can give rise to “over-smoothing” of fine structures
such as narrow peaks. The degree of smoothing can be tuned by multiplying the bandwidthhA(x)
with the user-specified factorKDEFineFactor.

For practical reasons, the KDE implementation in TMVA differs somewhat form the procedure
described above. Instead of using the unbinned training data, finely-binned histograms are used
as inputs, which allows to speed up the algorithm. In a second step, aKDEKernel class object is
created where the calculation of the bandwidthhNA is performed. If the algorithm is run in the
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adaptive mode the nonadaptive step is also performed and the output is used to computehA(x)
for the adaptive part. In a third step, a smoothed histogram estimating the PDF shape is filled by
looping over the binned input histogram and summing up the kernel functions. HerehNA is used
for the nonadaptive mode andhA(x) for the adaptive mode. Finally, the smoothed histogram is
used to construct aPDF class object.

Both the nonadaptive and the adaptive methods can suffer from the so-calledboundary problem.
It occurs for instance if the original distribution is nonzero below a physical boundary value and
zero above. This property cannot be reproduced by the KDE procedure. In general, the stronger
the discontinuity the more acute is the boundary problem. TMVA provides three options under the
termKDEborder that allow to treat boundary problems.

• KDEborder=None

No boundary treatment is performed. The consequence is that close to the boundary the
KDE result will be inaccurate: below the boundary it will underestimate the PDF while it
will not drop to zero above. In TMVA the PDF resulting from KDE is in fact a (finely-
binned) histogram, with bounds equal to the minimum and the maximum values of the
original distribution. Hence, the boundary value will be at the edge of the PDF (histogram),
and a drop of the PDF due to the closeness of the boundary can be observed (while the
artificial enhancement beyond the boundary will fall outside of the histogram). In other
words, for training events that are close to the boundary some fraction of the probability
“flows” outside the histogram (probabilityleakage). As a consequence, the integral of the
kernel function inside the histogram borders is smaller than one.

• KDEborder=Renorm

The probability leakage is compensated by renormalising of the kernel function so that the
integral inside the histogram borders is equal to one.

• KDEborder=Mirror

The original distribution is “mirrored” around the boundary. To the events originating from
this mirror copy the same procedure is applied as for the original ones: each of them is
smeared by a kernel function and its contribution inside the histogram (PDF) boundaries is
added to the PDF. The mirror copy exactly compensates the probability leakage.

Transforming the likelihood output

If a data-mining problem offers a large number of input variables, or variables with excellent
separation power, the likelihood responseyL is often strongly peaked at 0 (background) and 1
(signal). Such a response is inconvenient for the use in subsequent analysis steps. TMVA therefore
allows to transform the likelihood output by an inverse sigmoid function that zooms into the peaks

yL(i) −→ y′L(i) = −τ−1 ln
(
y−1
L − 1

)
, (14)

whereτ = 15 is used. Note thaty′L(i) is no longer contained within[0, 1] (see Fig.8). The trans-
formation (14) is enabled (disabled) with the booking optionTransformOutput=True(False).
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Figure 8: Transformation (14) of the likelihood output.

5.2.3 Ranking

The present likelihood implementation does not provide a ranking of the input variables.

5.2.4 Performance

Both the training and the application of the likelihood classifier are very fast operations that are
suitable for large data sets.

The performance of the classifier relies on the accuracy of the likelihood model. Because high
fidelity PDF estimates are mandatory, sufficient training statistics is required to populate the tails
of the distributions. The neglect of correlations between input variables in the model (9), often
leads to a diminution of the discrimination performance. While linear Gaussian correlations can
be rotated away (see Sec.4.1), such an ideal situation is rarely given. Positive correlations lead
to peaks at bothyL → 0, 1. Correlations can be reduced by categorizing the data samples and
building an independent likelihood classifier for each event category. Such categories could be
geometrical regions in the detector, kinematic properties, etc. In spite of this, realistic applications
with a large number of input variables are often plagued by irreducible correlations, so that pro-
jective likelihood approaches like the one discussed here are underperforming. This finding lead
to the development of the many alternative classifiers that exist in statistical theory today.

5.3 Multidimensional likelihood estimator (PDE range-search approach)

This is a generalization of the projective likelihood classifier described in Sec.5.2 to nvar dimen-
sions, wherenvar is the number of input variables used. If the multidimensional PDF for signal and
background were known, this classifier would exploit the full information contained in the input
variables, and would hence be optimal. In practice however, huge training samples are necessary
to sufficiently populate the multidimensional phase space.16 Kernel estimation methods may be
used to approximate the shape of the PDF for finite training statistics.

16Due to correlations between the input variables, only a sub-space of the full phase space may be populated.
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A simple probability density estimator denotedPDE range search, or PDERS, has been suggested
in Ref. [9]. The PDE for a given test event (discriminant) is obtained by counting the (normalised)
number of signal and background (training) events that occur in the ”vicinity” of the test event.
The classification of the test event may then be conducted on the basis of the majority of the near-
est training events. Thenvar-dimensional volume that encloses the ”vicinity” is user-defined and
can be adaptive. A search method based on sorted binary trees is used to reduce the computing
time for the range search. To enhance the sensitivity within the volume, kernel functions are used
to weight the reference events according to their distance from the test event. PDERS is a variant
of a K nearest neighbour algorithm.

5.3.1 Booking options

The PDERS classifier is booked via the command:

factory->BookMethod( Types::kPDERS, "PDERS", "<options>" );

Code Example 25: Booking of PDERS: the first argument is a predefined enumerator, the second argument is a user-
defined string identifier, and the third argument is the configuration options string. Individual options are separated by
a ’:’. See Sec.3.1.4for more information on the booking.

The configuration options for the PDERS classifier are given in Option Table6.

5.3.2 Description of the classifier and its implementation

To classify an event as being either of signal or of background type, alocal estimate of the proba-
bility density of it belonging to either class is computed. The method of PDERS provides such an
estimate by defining a volume (V ) around the test event (i), and by counting the number of signal
(nS(i, V )) and background events (nB(i, V )) obtained from the training sample in that volume.
The ratio

yPDERS(i, V ) =
1

1 + r(i, V )
(15)

is taken as the estimate, wherer(i, V ) = (nB(i, V )/NB) · (NS/nS(i, V )), andNS(B) is the total
number of signal (background) events in the training sample. The estimatoryPDERS(i, V ) peaks at
1 (0) for signal (background) events. The counting method averages over the PDF withinV , and
hence ignores the available shape information inside (and outside) that volume.

Binary tree search

Efficiently searching for and counting the events that lie inside the volume is accomplished with
the use of anvar-variable binary tree search algorithm [8] (cf. Sec.4.2).

Choosing a volume

The TMVA implementation of PDERS optionally provides four different volume definitions:



5.3 Multidimensional likelihood estimator (PDE range-search approach) 39

Option Values Description

VolumeRangeMode Unscaled, RMS,

MinMax, Adaptive*

Definition of the volume reference

DeltaFrac 3.0 Volume size: multiplies MinMax or
RMS

NEventsMin 100 Minimum number of events required in
adaptive volume

NEventsMax 200 Maximum number of events required in
adaptive volume

MaxVIterations 50 Maximum number of iterations for the
adaptive volume search

InitialScale 0.99 Initial size of adaptive volume (com-
pared to full volume spanned by data)

KernelEstimator Box*, Sphere,

Teepee, Gauss,

Sinc3(5,7,9,11),

Lanczos2(3,5,8)

Kernel estimator function

GaussSigma 0.2 Width (w.r.t. to volume size) of Gaus-
sian kernel estimator

Option Table 6: PDERS configuration options. Values given are defaults. If predefined categories exist, the default
category is marked by a ’*’. The options in Option Table3 can also be configured.

• Unscaled

The simplest volume definition consisting of a rigid box of sizeDeltaFrac, in units of the
variables. This method was the one originally used by the developers of PDERS [9].

• MinMax

The volume is defined in each dimension (i.e., input variable) with respect to the full range
of values found for that dimension in the training sample. The fraction of this volume used
for the range search is defined by the optionDeltaFrac.

• RMS

The volume is defined in each dimension with respect to the RMS of that dimension (input
variable), estimated from the training sample. The fraction of this volume used for the range
search is defined by the optionDeltaFrac.

• Adaptive

A volume is defined in each dimension with respect to the RMS of that dimension, esti-
mated from the training sample. The overall scale of the volume is adjusted individually
for each test event such that the total number of events confined in the volume lies within a
user-defined range (optionsNEventsMin/Max). The adjustment is performed by the class
RootFinder, which is a C++ implementation of Brent’s algorithm (translated from the
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CERNLIB function RZERO). The maximum initial volume (fraction of the RMS) and the
maximum number of iterations for the root finding is set by the optionsInitialScale

andMaxVIterations, respectively. The requirement to collect a certain number of events
in the volume automatically leads to small volume sizes in strongly populated phase space
regions, and enlarged volumes in areas where the population is scarce.

Although the adaptive volume adjustment is more flexible and should perform better, it signif-
icantly increases the computing time of the PDERS discriminant. If found too slow, one can
reduce the number of necessary iterations by choosing a largerNEventsMin/Max interval.

Event weighting with kernel functions

One of the shortcomings of the original PDERS implementation is its sensitivity to the exact
location of the sampling volume boundaries: an infinitesimal change in the boundary placement
can include or exclude a training event, thus changingr(i, V ) by a finite amount.17 In addition,
the shape information within the volume is ignored.

Kernel functions mitigate these problems by weighting each event within the volume as a function
of its distance to the test event. The farer it is away, the smaller is its weight. The following kernel
functions are implemented in TMVA, and can be selected with the optionKernelEstimator.

• Box

Corresponds to the original rectangular volume element without application of event weights.

• Sphere

A hyperelliptic volume element is used without application of event weights. The hyperel-
lipsoid corresponds to a sphere of constant fraction in theMinMax or RMS metrics. The size
of the sphere can be chosen adaptive, just as for the rectangular volume.

• Teepee

The simplest linear interpolation that eliminates the discontinuity problem of the box. The
training events are given a weight that decreases linearly with their distance from the centre
of the volume (the position of the test event). In other words: these events are convolved
with the triangle or tent function, becoming a sort of teepee in multidimensions.

• Gauss

The simplest well behaved convolution kernel. The width of the Gaussian (fraction of the
volume size) can be set by the optionGaussSigma.

Other methods implemented for test purposes are “Sinc” and ”Lanczos” functions∝ sinx/x of
different (symmetric) orders. They exhibit strong peaks at zero and oscillating tails. The Gaussian
and Teepee kernel functions are shown in Fig.9.

17Such an introduction of artefacts by having sharp boundaries in the sampled space is an example of Gibbs’s phe-
nomenon, and is commonly referred to asringing or aliasing.
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Figure 9: Kernel functions (left: Gaussian, right: Teepee) used to weight the events that are found inside the reference
volume of a test event.

5.3.3 Ranking

The present implementation of Likelihood does not provide a ranking of the input variables.

5.3.4 Performance

As opposed to many of the more sophisticated data-mining approaches, which tend to present
the user with a ”black box”, PDERS is simple enough that the algorithm can be easily traced
and tuned by hand. PDERS can yield competitive performance if the number of input variables
is not to large and the statistics of the training sample is ample. In particular, it naturally deals
with complex nonlinear variable correlations, the reproduction of which may, for example, require
involved neural network architectures.

PDERS is a slowly responding classifier. Only the training, i.e., the fabrication of the binary tree is
fast, which is usually not the critical part. The necessity to store the entire binary tree in memory
to avoid accessing virtual memory limits the number of training events that can effectively be used
to model the multidimensional PDF. This is not the case for the other classifiers implemented in
TMVA (with some exception for Boosted Decision Trees).

5.4 H-Matrix ( χ2) estimator

The origins of the H-Matrix approach dates back to works of Fisher and Mahalanobis in the context
of Gaussian classifiers [14, 15]. It discriminates one class (signal) of a feature vector from another
(background). The correlated elements of the vector are assumed to be Gaussian distributed, and
the inverse of the covariance matrix is theH-Matrix. A multivariateχ2 estimator is built that
exploits differences in the mean values of the vector elements between the two classes for the
purpose of discrimination.

The H-Matrix classifier as it is implemented in TMVA is equal or less performing than the Fisher
discriminant (see Sec.5.5), and has been only included for completeness.
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5.4.1 Booking options

The H-Matrix discriminant is booked via the command:

factory->BookMethod( Types::kHMatrix, "HMatrix", "<options>" );

Code Example 26: Booking of the H-Matrix classifier: the first argument is a predefined enumerator, the second
argument is a user-defined string identifier, and the third argument is the configuration options string. Individual options
are separated by a ’:’. See Sec.3.1.4for more information on the booking.

No configuration options in addition to those described in Option Table3 are implemented for the
H-Matrix classifier.

5.4.2 Description of the classifier and its implementation

For an eventi, each oneχ2 estimator (χ2
S(B)) is computed for signal (S) and background (B),

using estimates for the sample means (xS(B),k) and covariance matrices (CS(B)) obtained from
the training data

χ2
U (i) =

nvar∑
k,`=1

(xk(i)− xU,k) C−1
U,k` (x`(i)− xU,`) , (16)

whereU = S, B. From this, the discriminant

yH(i) =
χ2

B(i)− χ2
S(i)

χ2
B(i) + χ2

S(i)
, (17)

is computed to discriminate between the signal and background classes.

5.4.3 Ranking

The present implementation of the H-Matrix discriminant does not provide a ranking of the input
variables.

5.4.4 Performance

The TMVA implementation of the H-Matrix classifier has been shown to underperform in com-
parison with the corresponding Fisher discriminant (cf. Sec.5.5), when using similar assumptions
and complexity. It is therefore depreciated.

5.5 Fisher discriminants (linear discriminant analysis)

In the method of Fisher discriminants [14] event selection is performed in a transformed variable
space with zero linear correlations, by distinguishing the mean values of the signal and background
distributions. The linear discriminant analysis determines an axis in the (correlated) hyperspace
of the input variables such that, when projecting the output classes (signal and background) upon
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this axis, they are pushed as far as possible away from each other, while events of a same class are
confined in a close vicinity. The linearity property of this classifier is reflected in the metric with
which ”far apart” and ”close vicinity” are determined: the covariance matrix of the discriminating
variable space.

5.5.1 Booking options

The Fisher discriminant is booked via the command:

factory->BookMethod( Types::kFisher, "Fisher", "<options>" );

Code Example 27: Booking of the Fisher discriminant: the first argument is a predefined enumerator, the second
argument is a user-defined string identifier, and the third argument is the configuration options string. Individual options
are separated by a ’:’. See Sec.3.1.4for more information on the booking.

The configuration options for the Fisher discriminant are given in Option Table7.

Option Values Description

Method Fisher*, Mahalanobis Variations of linear discriminants

Option Table 7: Configuration options for the Fisher discriminant. Values given are defaults. If predefined categories
exist, the default category is marked by a ’*’. The options in Option Table3 can also be configured.

5.5.2 Description of the classifier and its implementation

The classification of the events in signal and background classes relies on the following charac-
teristics: the overall sample meansxk for each input variablek = 1, . . . , nvar, the class-specific
sample meansxS(B),k, and total covariance matrixC of the sample. The covariance matrix can
be decomposed into the sum of awithin- (W ) and abetween-class matrix(B). They respectively
describe the dispersion of events relative to the means of their own class (within-class matrix), and
relative to the overall sample means (between-class matrix)18.

18The within-class matrix is given by

Wk` =
∑

U=S,B

〈xU,k − xU,k〉〈xU,` − xU,`〉 = CS,k` + CB,k` ,

whereCS(B) is the covariance matrix of the signal (background) sample. The between-class matrix is obtained by

Bk` =
1

2

∑
U=S,B

(xU,k − xk) (xU,` − x`) ,

wherexS(B),k is the average of variablexk for the signal (background) sample, andxk denotes the average for the
entire sample.
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TheFisher coefficients, Fk, are then given by

Fk =
√

NSNB

NS + NB

nvar∑
`=1

W−1
k` (xS,` − xB,`) , (18)

whereNS(B) are the number of signal (background) events in the training sample. The Fisher
discriminantyFi(i) for eventi is given by

yFi(i) = F0 +
nvar∑
k=1

Fkxk(i) . (19)

The offsetF0 centers the sample meanyFi of all NS + NB events at zero.

Instead of using the within-class matrix, the Mahalanobis variant determines the Fisher coefficients
as follows [15]

Fk =
√

NSNB

NS + NB

nvar∑
`=1

C−1
k` (xS,` − xB,`) , (20)

whereCk` = Wk` + Bk`.

5.5.3 Ranking

The Fisher discriminant analysis aims at simultaneously maximising the between-class separation
while minimising the within-class dispersion. A useful measure of the discrimination power of a
variable is therefore given by the diagonal quantityBkk/Ckk, which is used for the ranking of the
input variables.

5.5.4 Performance

In spite of the simplicity of the classifier, Fisher discriminants can be competitive with likelihood
and non-linear discriminants in certain cases. In particular, Fisher discriminants are optimal for
Gaussian distributed variables with linear correlations (cf. the standard toy example that comes
with TMVA).

On the other hand, no discrimination at all is achieved when a variable has the same sample mean
for signal and background, even if the shapes of the distributions are very different. Thus, Fisher
discriminants often benefit from suitable transformations of the input variables. For example, if a
variablex ∈ [−1, 1] has a a signal distributions of the formx2, and a uniform background distribu-
tions, their mean value is zero in both cases, leading to no separation. The simple transformation
x → |x| renders this variable powerful for the use in a Fisher discriminant.

5.6 Artificial Neural Networks (non-linear discriminants)

An Artificial Neural Network (ANN) is most generally speaking any simulated collection of inter-
connected neurons, with each neuron producing a certain response at a given set of input signals.
By applying an external signal to some (input) neurons the network is put into a defined state that
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can be measured from the response of one or several (output) neurons. One can therefore view
the neural network as a mapping from a space of input variablesx1, . . . , xnvar onto a, in case of
a signal-versus-background discrimination problem, one-dimensional space of output variablesy.
The mapping is non-linear if at least one neuron has a non-linear response to its input.

In TMVA three neural network implementations are available to the user. The first was adapted
from a FORTRAN code developed at the Université Blaise Pascal in Clermont-Ferrand,19 the sec-
ond is the ANN implementation that comes with ROOT. The third is a newly developed neural
network (denotedMLP) that is faster and more flexible than the other two and is the recommended
neural network to use with TMVA. All three neural networks are feed-forward multilayer percep-
trons.

5.6.1 Booking options

The Clermont-Ferrand neural network

The Clermont-Ferrand neural network is booked via the command:

factory->BookMethod( Types::kCFMlpANN, "CF_ANN", "<options>" );

Code Example 28: Booking of the Clermont-Ferrand neural network: the first argument is a predefined enumerator,
the second argument is a user-defined string identifier, and the third argument is the options string. Individual options
are separated by a ’:’. See Sec.3.1.4for more information on the booking.

The configuration options for the Clermont-Ferrand neural net are given in Option Table8.

Option Values Description

NCycles 3000 Number of training cycles

HiddenLayers "N-1,N-2,..." Specification of the network architecture

Option Table 8: Configuration options for the Clermont-Ferrand neural net. Values given are defaults. See Sec.5.6.3
for a description of the network architecture configuration. The options in Option Table3 can also be configured.

The ROOT neural network (class TMultiLayerPerceptron)

This neural network interfaces the ROOT classTMultiLayerPerceptron and is booked through
the Factory via the command line:

19The original Clermont-Ferrand neural network has been used for Higgs search analyses in ALEPH, and background
fighting in rareB-decay searches by the BABAR Collaboration. For the use in TMVA the FORTRAN code has been
converted to C++.
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factory->BookMethod( Types::kTMlpANN, "TMlp_ANN", "<options>" );

Code Example 29: Booking of the ROOT neural network: the first argument is a predefined enumerator, the second
argument is a user-defined string identifier, and the third argument is the configuration options string. See Sec.3.1.4for
more information on the booking.

The configuration options for the ROOT neural net are given in Option Table9.

Option Values Description

NCycles 3000 Number of training cycles

HiddenLayers "N-1,N-2,..." Specification of the network architecture

Option Table 9: Configuration options for the ROOT neural network. Values given are defaults. See Sec.5.6.3for a
description of the network architecture configuration. The options in Option Table3 can also be configured.

The MLP neural network

The MLP neural network is booked through the Factory via the command line:

factory->BookMethod( Types::kMLP, "MLP_ANN", "<options>" );

Code Example 30: Booking of the MLP neural network: the first argument is a predefined enumerator, the second
argument is a user-defined string identifier, and the third argument is the options string. See Sec.3.1.4 for more
information on the booking.

The configuration options for the MLP neural net are given in Option Table10.

Option Values Description

NCycles 3000 Number of training cycles

HiddenLayers "N-1,N-2,..." Specification of the network architecture

Normalise True Normalised input variables flag

NeuronType sigmoid*, linear, tanh,

radial

Neuron activation function

NeuronInputType sum, sqsum, abssum Neuron input norm (synapsis function)

Option Table 10: Configuration options for the MLP neural network. Values given are defaults. If predefined cat-
egories exist, the default category is marked by a ’*’. See Sec.5.6.3 for a description of the network architecture
configuration. The options in Option Table3 can also be configured.
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Figure 10: Multilayer perceptron with one hidden layer.

5.6.2 Description of the classifiers and their implementation

The behaviour of an artificial neural network is determined by the layout of the neurons, the
weights of the inter-neuron connections, and by the response of the neurons to the input, described
by neuron response functionρ.

Multilayer Perceptron

While in principle a neural network withn neurons can haven2 directional connections, the com-
plexity can be reduced by organizing the neurons in layers and only allowing directional connec-
tions from one layer to the immediate next one (see Fig.10). This kind of neural network is termed
multilayer perceptron; all neural net implementations in TMVA are of this type. The first layer of
a multilayer perceptron is the input layer, the last one the output layer, and all others arehidden
layers. For a classification problem withnvar input variables and 2 output classes the input layer
consists ofnvar neurons that hold the input values,x1, . . . , xnvar, and one neuron in the output
layer that holds the output variable, the neural net estimatoryANN.20 Each directional connection
between the output of one neuron and the input of another has an associated weight. The value of
the output neuron is multiplied with the weight to be used as input value for the next neuron.

20If two output neurons were used in the output layer, one for signal and the other for background, their output values
would beyANN and1− yANN, respectively.
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Neuron response function

The neuron response functionρ maps the neuron inputi1, . . . , in onto the neuron output (Fig.11).
Often it can be separated into aRn 7→ R synapsis functionκ, and aR 7→ R neuron activation
functionα, so thatρ = α ◦ κ. The functionsκ andα can have the following forms:
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(21)

α : x →



x Linear,

1
1 + e−kx Sigmoid,

ex − e−x

ex + e−x Tanh,

e−x2/2 Radial.

(22)

5.6.3 Network architecture

The number of hidden layers in a network and the number of neurons in these layers are config-
urable via the optionHiddenLayers. For example the configuration"HiddenLayers=N-1,N+
10:3" creates a network with three hidden layers, the first hidden layer withnvar− 1 neurons, the
second withnvar + 10 neurons, and the third with 3 neurons.

When building a network two rules should be kept in mind. The first is the theorem by Weierstrass
ascertaining that for a multilayer perceptron a single hidden layer is sufficient to approximate a
given continuous correlation function to any precision, given an arbitrary large number of neurons
in the hidden layer. If the available computing power and the size of the training data sample are
sufficient, one can thus raise the number of neurons in the hidden layer until the optimal perfor-
mance is reached.

It is possible that the same performance can be reached with a network with more than one hidden
layer and a potentially much smaller total number of hidden neurons. This would lead to a shorter
training time and a more robust network.
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Training of the neural network

The most common algorithm for adjusting the weights that optimise the classification performance
of a neural network is the so-calledback propagation. It belongs to the family of supervised
learning methods, where the desired output for every input event is known. Back propagation is
used by all neural networks in TMVA. The output of a network (here for simplicity assumed to
have a single hidden layer with a Tanh activation function, and a linear activation function in the
output layer) is given by

yANN =
nh∑

j=1

y
(2)
j w

(2)
j1 =

nh∑
j=1

tanh

(
nvar∑
i=1

xiw
(1)
ij

)
· w(2)

j1 , (23)

wherenvar andnh are the number of neurons in the input layer and in the hidden layer, respectively,
w

(1)
ij is the weight between input-layer neuroni and hidden-layer neuronj, andw

(2)
j1 is the weight

between the hidden-layer neuronj and the output neuron. Simple summation was used in Eq. (23)
as synapsis functionκ.

During the learning process the network is supplied withN training eventsxa = (x1, . . . , xnvar)a,
a = 1, . . . , N . For each training eventa the neural network outputyANN,a is computed and
compared to the desired outputŷa ∈ {1, 0} (1 for signal events and 0 for background events).
An error functionE, measuring the agreement of the network response with the desired one, is
defined by

E(x1, . . . ,xN |w) =
N∑

a=1

Ea(xa|w) =
N∑

a=1

1
2

(yANN,a − ŷa)
2 , (24)

wherew denotes the ensemble of adjustable weights in the network. The set of weights that min-
imizes the error function can be found using the method ofsteepestor gradient descent, provided
that the neuron response function is differentiable with respect to the input weights. Starting from
a random set of weightsw(ρ) the weights are updated by moving a small distance inw-space into
the direction−∇wE whereE decreases most rapidly

w(ρ+1) = w(ρ) − η∇wE , (25)

where the positive numberη is thelearning rate.

The weights connected with the output layer are updated by

∆w
(2)
j1 = −η

N∑
a=1

∂Ea

∂w
(2)
j1

= −η
N∑

a=1

(yANN,a − ŷa) y
(2)
j,a , (26)

and the weights connected with the hidden layers are updated by

∆w
(1)
ij = −η

N∑
a=1

∂Ea

∂w
(1)
ij

= −η
N∑

a=1

(yANN,a − ŷa) y
(2)
j,a (1− y

(2)
j,a )w(2)

j1 xi,a , (27)

where we have usedtanh′ x = tanh x(1 − tanh x). This method of training the network is
denotedbulk learning, since the sum of errors of all training events is used to update the weights.
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An alternative choice is the so-calledonline learning, where the update of the weights occurs
at each event. The weight updates are obtained from Eqs. (26) and (27) by removing the event
summations. In this case it is important to use a well randomized training sample. Online learning
is the learning method implemented in TMVA.

5.6.4 Ranking

The MLP neural network implements a variable ranking based on the sum of the weights-squared
of the connections that leave the variable input neuron. The importanceIi of the input variablei
is given by

Ii = x2
i

nh∑
j=1

(
w

(1)
ij

)2
, i = 1, . . . , nvar , (28)

wherexi is the sample mean of input variablei.

5.6.5 Performance

In the tests we have carried out so far, the MLP and ROOT networks performed equally well, with
however a clear speed advantage for the MLP. The Clermont-Ferrand neural net exhibited worse
classification performance in these tests, which is partly due to the slow convergence of its training
(at least 10k training cycles are required to achieve approximately competitive results).

5.7 Boosted Decision Trees (BDT)

A decision treeis a binary tree structured classifier like the one sketched in Fig.12. Repeated
left/right (yes/no) decisions are performed on a single variable at a time until some stop criterion
is reached. Like this the phase space is split into regions that are eventually classified as signal or
background, depending on the majority of training events that end up in the finalleaf nodes. The
boostingof a decision tree (BDT) represents an extension to a single decision tree. Several decision
trees (aforest), derived from the same training sample by reweighting events, are combined to form
a classifier which is given by a (weighted) majority vote of the individual decision trees. Boosting
stabilizes the response of the decision trees with respect to fluctuations in the training sample.

5.7.1 Booking options

The BDT classifier is booked via the command:

factory->BookMethod( Types::kBDT, "BDT", "<options>" );

Code Example 31: Booking of the BDT classifier: the first argument is a predefined enumerator, the second argument
is a user-defined string identifier, and the third argument is the configuration options string. Individual options are
separated by a ’:’. See Sec.3.1.4for more information on the booking.
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Figure 12: Schematic view of a decision tree. Starting from the root node, a sequence of binary splits using the
discriminating variablesxi is performed. Each split uses the variable that at this node gives the best separation between
signal and background when being cut on. The same variable may thus be used at several nodes, while others might not
be used at all. The leaf nodes at the bottom end of the tree are labeled “S” for signal and “B” for background depending
on the majority of events that end up in the respective nodes.

Several configuration options are available to customize the BDT classifier. They are summarized
in Option Table11and described in more detail in Sec.5.7.2.

5.7.2 Description of the classifier and its implementation

Decision trees are well known classifiers that allow straightforward interpretation as they can be
visualized by a simple two dimensional tree structure. They are in this respect similar to rectangu-
lar cuts. However, whereas a cut-based analysis is able to select onlyonehypercube as region of
phase space, the decision tree is able to split the phase space into a large number of hypercubes,
each of which is identified as either “signal-like” or “background-like”. The path down the tree to
each leaf node represents an individual cut sequence that selects signal or background depending
on the type of the leaf node.

A shortcoming of decision trees is their instability with respect to statistical fluctuations in the
training sample from which the tree structure is derived. For example, if two input variables ex-
hibit similar separation power, a fluctuation in the training sample may cause the tree growing
algorithm to decide to split on one variable, while the other variable could have been selected
without that fluctuation. In such a case the whole tree structure is altered below this node, possibly
resulting also in a substantially different classifier response.

This problem is overcome by constructing a forest of decision trees and classifying an event on
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Option Values Description

nTrees 200 Number of trees in the forest

BoostType AdaBoost*, Bagging Boosting type for tree building

SeparationType GiniIndex*,

MisClassificationError,

CrossEntropy,

SDivSqrtSPlusB

Separation criterion applied for the node
splitting

nEventsMin 10 Minimum number of events in a node
where further splitting is stopped

nCuts 20 Number of steps in the scan to optimise
the cut at a node

UseYesNoLeaf True Use simple Yes/No decision from leaf
node or (ifFalse) use the training leaf
purity as signal/background weight

UseWeightedTrees True Use a weighted (e.g., ln(boost-weight)
from AdaBoost) or unweighted majority
vote of all trees in the forest

PruneMethod CostComplexity*,

ExpectedError

Pruning method

PruneStrength 5 Amount of pruning: it should be large
enough such that overtraining is avoided
and needs to be tuned for each analysis;
if set to a negative value, an algorithm
attempts to search for the optimal prune
strength

Option Table 11: Configuration options for the BDT classifier. Values given are defaults. If predefined categories
exist, the default category is marked by a ’*’. The common options in Option Table3 can also be configured.

a majority vote of the classifications done by each tree in the forest. All trees in the forest are
derived from the same training sample, with the events being subsequently subjected to so-called
boosting, a procedure which modifies their weights in the sample. Boosting increases the statisti-
cal stability of the classifier and typically also improves the separation performance compared to a
single decision tree. However, the advantage of the straightforward interpretation of the decision
tree is lost. While one can of course still look at a limited number of trees trying to interprete the
training result, one will hardly be able to do so for hundreds of trees in a forest. Nevertheless,
the general structure of the selection can already be understood by looking at a limited number of
individual trees.
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Boosting

Boosting is a general procedure whose application is not limited to decision trees. The same
classifier is trained several times using a successivelyboosted(reweighted) training event sample.
The final classifier is then derived from the combination of all the individual classifiers. The most
popular boosting algorithm is the so-calledAdaBoost[16] (adaptive boost), where events that
were misclassified during the training of a tree are given a higher event weight in the training of
the next following tree. Starting with the original event weights when training the first decision
tree, the subsequent tree is trained using a modified event sample where the weights of previously
misclassified events are multiplied by a commonboost weightα. The boost weight is derived from
the misclassification rateerr of the previous tree,

α =
1− err

err
. (29)

The entire event sample is then renormalised to keep the total number of events (sum of weights)
in a tree constant.

With the result of an individual treeh(x) (x being the tuple of input variables) encoded for signal
and background ash(x) = +1 and − 1, respectively, the resulting event classificationyBDT(x)
for the boosted classifier is then given by

yBDT(x) =
∑

i∈forest

ln(αi) · hi(x) , (30)

where the sum is over all trees in the forest. Small (large) values foryBDT(x) indicate a background-
like (signal-like) event. Equation (30) is the default BDT boosting. It can be altered using the
optionUseWeightedTrees=False for which theyBDT(x) is computed as the average of the in-
dividual trees without the weighting factorsln(αi).

Another possible modification of Eq. (30) is to use the training purity21 in the leaf node as re-
spectively signal or backgroundweightsrather than relying on the binary decision. This option
is chosen by setting the optionUseYesNoLeaf=False. Such an approach however should be
adopted with care as the purity in the leaf nodes is sensitive to overtraining and therefore typically
overestimated. Tests performed so far with this option did not show significant performance in-
crease. Further studies together with tree pruning are needed to better understand the behaviour of
the purity-weighted BDTs.

The other boosting technique implemented in TMVA is a resampling technique, sometimes re-
ferred to asbagging. It is selected via theBoostType option. The resampling is done with
replacement, which means that the same event is allowed to be (randomly) picked several times
from the parent sample. This is equivalent to regarding the training sample as being a represen-
tation of the probability density distribution of the parent event ensemble. If one draws an event
out of this ensemble, it is more likely to draw an event from a region of phase-space that has a
high cross section, as the original Monte Carlo sample will have more events in that region. If a

21The purity of a node is given by the ratio of signal events to all events in that node. Hence pure background nodes
have zero purity.
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selected event is kept in the original sample (that is when the same event can be selected several
times), the parent sample remains unchanged so that the randomly extracted samples will have
the same parent distribution, albeit statistically fluctuated. Training several decision trees with
different resampled training data and combining them into a forest results in an averaged classifier
that, just as for boosting, is more stable with respect to statistical fluctuations in the training sam-
ple. Technically the resampling is implemented by applying random weights to each event of the
parent sample.

Training (Building) a decision tree

The training, building orgrowingof a decision tree is the process that defines the splitting criteria
for each node. The training starts with the root node, where an initial splitting criterion for the
full training sample is determined. The split results in two subsets of training events that each go
through the same algorithm of determining the next splitting iteration. This procedure is repeated
until the whole tree is built. At each node, the split is determined by finding the variable and
corresponding cut value that provides the best separation between signal and background. The
node splitting is stopped once it has reached the minimum number of events which is specified in
the BDT configuration. The end- or leaf nodes are classified as signal or background according to
the class the majority of events belongs to.

A variety of separation criteria can be configured to assess the performance of a variable and a
specific cut requirement. Because a cut that selects predominantly background is as valuable as
one that selects signal, the criteria are symmetric with respect to the event classes. All separation
criteria have a maximum where the samples are fully mixed, i.e., at purityp = 0.5, and fall
off to zero when the sample consists of one event class only. Tests have revealed no significant
performance disparity between the following separation criteria:

• Gini Index[default], defined byp · (1− p).

• Cross entropy, defined by−p · ln(p)− (1− p) · ln(1− p).

• Misclassification error, defined by1−max(p, 1− p).

• Statistical significance, defined byS/
√

S + B.

The splitting criterion being always a cut on a single variable, the training procedure selectsthe
variable and cut value that optimises theincreasein the separation index between the parent node
and the sum of the indices of the two daughter nodes, weighted by their relative fraction of events.
The cut values are optimised by scanning over the variable range with a granularity that is set
via the optionnCuts. The default value ofnCuts=20 proved to be a good compromise between
computing time and step size. Finer stepping values did not increase noticeably the performance
of the BDTs.

In principle, the splitting could continue until each leaf node contains only signal or only back-
ground events, which could suggest that perfect discrimination is achievable. However, such a
decision tree would be strongly overtrained. To avoid overtraining a decision tree must bepruned.
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Pruning a decision tree

Pruning is the process of cutting back a tree from the bottom up after it has been built to its
maximum size. Its purpose is to remove statistically insignificant nodes and thus reduce the over-
training of the tree. It has been found to be beneficial to first grow the tree to its maximum size
and then cut back, rather than interrupting the node splitting at an earlier stage. This is because
apparently insignificant splits can nevertheless lead to good splits further down the tree. TMVA
currently implements two tree pruning algorithms.

• For theexpected error pruning[17] all leaf nodes for which the statistical error estimates of
the parent nodes are smaller than the combined statistical error estimates of their daughter
nodes are recursively deleted. The statistical error estimate of each node is calculated using
the binomial error

√
p · (1− p)/N , whereN is the number of training events in the node

andp its purity. The amount of pruning is controlled by multiplying the error estimate by
the fudge factorPruneStrength.

• Cost complexity pruning[18] relates the number of nodes in a subtree below a node to the
gain in terms of misclassified training events by the subtree compared the the node itself
with no further splitting. The cost estimateR chosen for the misclassification of training
events is given by the misclassification rate1−max(p, 1−p) in a node. The cost complexity
for this node is then defined by

ρ =
R(node)−R(subtree below that node)
#nodes(subtree below that node)− 1

. (31)

The node with the smallestρ value in the tree is recursively pruned away as long asρ <
PruneStrength.

Note that the pruning is performedafter the boosting so that the error fraction used by AdaBoost
is derived from the unpruned tree.

If the PruneStrength option is set to a negative value, an algorithm attempts to automatically
detect the optimal strength parameter. The training sample is divided into two subsamples, of
which only one is used for training, while the other one serves for validation. Starting with a
small value, the prune strength is increased until the maximum performance of the decision tree
is reached on the validation sample. This is done for each tree individually. Because of statistical
fluctuations the performance may not appear as a smooth function of the prune strength, which
could lead to inaccurate optimisation if the validation sample is too small.

5.7.3 Ranking

A ranking of the BDT input variables is derived by counting how often the variables are used to
split decision tree nodes, and by weighting each split occurrence by the separation gain-squared it
has achieved and by the number of events in the node [18]. This measure of the variable importance
can be used for a single decision tree as well as for a forest.



5.8 Predictive learning via rule ensembles (RuleFit) 56

5.7.4 Performance

Only limited experience has been gained so far with boosted decision trees in HEP. In the literature
decision trees are sometimes referred to as the best “out of the box” classifiers. This is because
little tuning is required in order to obtain reasonably good results. This is due to the simplicity of
the method where each training step (node splitting) involves only a one-dimensional cut optimi-
sation. Decision trees are also insensitive to the inclusion of poorly discriminating input variables.
While for artificial neural networks it is typically more difficult to deal with such additional vari-
ables, the decision tree training algorithm will basically ignore non discriminating variables as
for each node splitting only the best discriminating variable is used. However, the simplicity of
decision trees has the drawback that their theoretically best performance on a given problem is
generally inferior to other techniques like neural networks. This is seen for example using the aca-
demic training samples included in the TMVA package. For this sample, which has equal RMS but
shifted mean values for signal and background and linear correlations between the variables only,
the Fischer discriminant provides theoretically optimal discrimination results. While the artificial
neural networks are able to reproduce this optimal selection performance the BDTs always fall
short in doing so. However, in other academic examples with more complex correlations or real
life examples, the BDTs often outperform the other techniques. This is because either there are
not enough training events available that would be needed by the other classifiers, or the optimal
configuration (i.e. how many hidden layers, which variables) of the neural network has not been
specified.

5.8 Predictive learning via rule ensembles (RuleFit)

This classifier is a TMVA implementation of Friedman-Popscus’ RuleFit method described in [19].
Its idea is to use an ensemble of so-calledrulesto create a scoring function with good classification
power. Each ruleri is defined by a sequence of cuts, such as

r1(x) = I(x2 < 100.0) · I(x3 > 35.0) ,

r2(x) = I(0.45 < x4 < 1.00) · I(x1 > 150.0) ,

r3(x) = I(x3 < 11.00) ,

where thexi are discriminating input variables, andI(. . . ) returns the truth of its argument. A
rule applied on a given event is non-zero only if all of its cuts are satisfied, in which case the rule
returns 1.

The easiest way to create an ensemble of rules is to extract it from a forest of decision trees (cf.
Sec.5.7). Every node in a tree (except the root node) corresponds to a sequence of cuts required
to reach the node from the root node, and can be regarded as a rule. Hence for the tree illustrated
in Fig. 12 a total of 8 rules can be formed. Linear combinations of the rules in the ensemble are
created with coefficients (rule weights) calculated using a regularised minimisation procedure [20].
The resulting linear combination of all rules defines ascorefunction (see below) which provides
the RuleFit responseyRF(x).

In some cases a very large rule ensemble is required to obtain a competitive discrimination between



5.8 Predictive learning via rule ensembles (RuleFit) 57

signal and background. A particularly difficult situation is when the true (but unknown) scoring
function is described by a linear combination of the input variables. In such cases, e.g., a Fischer
discriminant would perform well. To ease the rule optimisation task, a linear combination of the
input variables is added to the model. The minimisation procedure will then select the appropriate
coefficients for the rulesandthe linear terms. More details are given in Sec.5.8.2below.

5.8.1 Booking options

The RuleFit classifier is booked via the command:

factory->BookMethod( Types::kRuleFit, "RuleFit", "<options>" );

Code Example 32: Booking of RuleFit: the first argument is a predefined enumerator, the second argument is a user-
defined string identifier, and the third argument is the configuration options string. Individual options are separated by
a ’:’. See Sec.3.1.4for more information on the booking.

The RuleFit configuration options are given in Option Table12.

5.8.2 Description of the classifier and its implementation

As for all TMVA classifiers, the goal of the rule learning is to find a classification functionyRF(x)
that optimally classifies an event according to the tuple of input observations (variables)x. The
classification function is written as

yRF(x) = a0 +
MR∑
m=1

amfm(x) , (32)

where the set{fm(x)}MR
forms an ensemble ofbase learnerswith MR elements. A base learner

may be any discriminating function derived from the training data. In our case, they consist of
rules and linear terms as described in the introduction. The complete model then reads

yRF(x) = a0 +
MR∑
m=1

amrm(x) +
nvar∑
i=1

bixi . (33)

To protect against outliers, the variables in the linear terms are modified to

x′i = min(δ+
i ,max(δ−i )) , (34)

whereδ±i are the lower and upperβ quantiles of the variablexi. If the variables are used “as
is”, they may have an unequala priori influence relative to the rules. To counter this effect, the
variables are normalised

x′i → σr · x′i/σi , (35)

whereσr andσi are the estimated standard deviations of an ensemble of rules and the variablex′i,
respectively.
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Option Values Description

Model ModRuleLinear*, ModRule,

ModLinear

This option controls whether rules
and/or linear terms are to be included

LinQuantile 0.025 Concerns only the linear terms and de-
fines a region outside which a variable is
regarded as an outlier; a quantile of zero
retains all values

MinImp 0.01 Minimum relative importance accepted
in the final model

RuleMaxDist 0.001 Minimum “rule distance”; removes sim-
ilar rules; if zero, all rules are kept

SampleFraction -1 Event fraction used to train each tree;
if < 0, the fraction is calculated using
Eq. (36)

nTrees -1 Number of trees in forest; see also Op-
tion Table11

nCuts 20 Scan depths of node cut optimisation

SeparationType GiniIndex*,

MisClassificationError,

CrossEntropy,

SDivSqrtSPlusB

Separation criterion for node splitting

fEventsMin 0.1 Minimum fraction giving the minimum
number of events in a node where further
splitting is stopped

fEventsMax 0.9 Ditto, maximum fraction

GDTau 0.6 Minimisation fit threshold; used only if
the tau scan range is empty; for the defi-
nition of tau, see Sec.22

GDTauMin 0.0 Minimum tau in scan

GDTauMax 1.0 Maximum tau in scan

GDNTau 1 Number of tau; if< 2, GDTau is used

GDTauScan 200 Number of points to scan for best tau
along path

GDStep 0.01 Step size along the path

GDNSteps 10000 Maximum number of steps

GDErrScale 1.1 Threshold for error-rate (always≥ 1)

Option Table 12: Configuration options for RuleFit. Values given are defaults. If predefined categories exist, the
default category is marked by a ’*’. The options in Option Table3 can also be configured.
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Rule generation

The rules are extracted from a random forest of decision trees. There are several ways to generate
a forest. In the current RuleFit implementation it is generated from random subsamples of the
training data. Each tree in a forest is generated using a given fraction (SampleFraction) of the
training sample.22 If the user gives a fraction≤ 0, the fraction is calculated from the training
sample sizeN (signal and background) using the empirical formula [21]

f = min(0.5, (100.0 + 6.0 ·
√

N)/N) . (36)

The topology of each tree is controlled by the configuration parametersEventsMin, EventsMax,
nCuts andSeparationType, the last two of which are described in Sec.5.7. The first two pa-
rameters define a range of fractions which are used to calculate the minimum number of events in
a node required for further splitting. For each tree, a fraction is drawn from a uniform distribution
within the given range. The obtained fraction is then multiplied with the number of training events
used for the tree, giving the minimum number of events in a node to allow for splitting. In this way
both large trees (small fraction) giving complex rules and small trees (large fraction) for simple
rules are created. For a given forest ofNt trees, where each tree hasn` leaf nodes, the maximum
number of possible rules is

MR,max =
Nt∑
i=1

2(n`,i − 1) . (37)

To prune similar rules, adistanceis defined between twotopologically equalrules. Two rules
are topologically equal if their cut sequences follow the same variables only differing in their cut
values. The rule distance is then defined by

δ2
R =

∑
i

δ2
i,L + δ2

i,U

σ2
i

, (38)

whereδi,L(U) is the difference in lower (upper) limit between the two cuts containing the variable
xi, i = 1, . . . , nvar. The difference is normalised to the RMS-squaredσ2

i of the variable. Similar
rules with a distance smaller thanRuleMinDist are removed from the rule ensemble. The pa-
rameter can be tuned to improve speed and to suppress noise. However, the cut should be used
with care since a too large cut value will deplete the rule ensemble and weaken its classification
performance.

Fitting

Once the rules are defined, the coefficients in Eq. (33) are fitted using the training data. For
details, the fitting method is described in [20]. A brief description is provided below to motivate
the corresponding RuleFit options.

22Since both the number of trees and the sample fractions are free parameters, the subsamples used per tree will
overlap if the number of trees is greater than 1/SampleFraction. By settingnTrees=-1, the maximum number of
trees allowed without overlapping will be selected. In the output, it is printed whether the subsets are overlapping or
not.
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A loss functionL(yRF(x)|ŷ), given by the “squared-error ramp” [20]

L(yRF|ŷ) = (ŷ −H(yRF))2 , (39)

whereH(y) = max(−1,min(yRF, 1)), quantifies the “cost” of misclassifying an event of given
true clasŝy. The risk R is defined by the expectation value ofL with respect tox and the true
class. Since the true distributions are generally not known, the average ofN training events is
used as an estimate

R =
1
N

N∑
i=1

L(yRF(xi)|ŷi) . (40)

A line element in the parameter space of the rule weights (given by the vectora of all coefficients)
is then defined by

a(ε + δε) = a(ε) + δε · g(ε) , (41)

whereδε is a positive small increment andg(ε) is the negative derivative of the estimated risk
R, evaluated ata(ε). The estimated risk-gradient is evaluated using a sub-sample (Eq.36) of the
training events.

Starting with all weights set to zero, the consecutive application of Eq. (41) creates a path in thea
space. At each step, the procedure selects only the gradientsgk with absolute values greater than a
certain fraction (τ ) of the largest gradient. The fractionτ is ana priori unknown quantity between
0 and 1. The valueτ = 0 implies that at each step on the path all gradients are used, while only
the strongest gradient is selected forτ = 1. It is possible to automatically estimate the appropriate
τ by means of a scan. To do so, several paths (GDNTau) with different fractions (rangeGDTauMin,
GDTauMax) are initially scanned for a certain number of points (GDTauScan), and the path with
the best performance is selected. The step size and the number of points along the paths are given
by the optionsGDStep andGDNSteps. After every 100 steps, the performance is estimated using
the area under the curve of background rejection versus signal efficiency. The area is evaluated
using the eventsnot used in the calculation of the path (one-fold cross validation). The stepping
along the path is stopped when the error rate e= 1 − area is larger than(GDErrScale · min e)
and the point giving the minimum error rate is selected. A simple example with a few scan points
is illustrated in Fig.13.

5.8.3 Ranking

Since the input variables are normalised, the ranking of variables follows naturally from the coef-
ficients of the model. To each rulem (m = 1, . . . ,MR) can be assigned an importance defined by

Im = |am|
√

sm(1.0− sm) , (42)

wheresm is thesupportof the rule with the following definition

sm =
1
N

N∑
n=1

rm(xn) . (43)
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Figure 13: An example of a path scan in two dimensions. Each point represents anε in Eq. (41) and each step is given
by δε. The direction along the path at each point is given by the vectorg. For the first few points, the pathsτ(1, 2, 3)
are created with different values ofτ . After a given number of steps, the best path is chosen and the search is continued.
It stops when the best point is found. That is, when the estimated error-rate is minimum.

The support is thus the average response for a given rule on the data sample. A large support
implies that many events pass the cuts of the rule. Hence, such rules cannot have strong discrim-
inating power. On the other hand, rules with small support only accept few events. They may
be important for these few events they accept, but they are not in the overall picture. The defini-
tion (42) for the rule importance suppresses rules with both large and small support.

For the linear terms, the definition of importance is

Ii = |bi| · σi , (44)

so that variables with small overall variation will be assigned a small importance.

A measure of the variable importance may then be defined by

Ji = Ii +
∑

m|xi∈rm

Im/qm , (45)

where the sum is over all rules containing the variablexi, andqm is the number of variables used
in the rulerm. This is introduced in order to share the importance equally between all variables in
rules with more than one variable.

5.8.4 Performance

Rule ensemble based learning machines are not yet well known within the HEP community, al-
though they start to receive some attention [22]. Apart from RuleFit [19] other rule ensemble
learners exists, such as SLIPPER [23].
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The TMVA implementation of RuleFit follows closely the original design described in Ref. [19].
Currently the performance is however slightly less robust than the one of the Friedman-Popescu
package. Also, the experience using the method is still scarce at the time of this writing.

To optimise the performance of RuleFit several strategies can be employed. The training consists
of two steps, rule generation and rule ensemble fitting. One approach is to modify the complexity
of the generated rule ensemble by changing either the number of trees in the forest, or the com-
plexity of each tree. In general, large tree ensembles with varying trees sizes perform better than
short noncomplex ones. The drawback is of course that fitting becomes slow. However, if the
fitting performs well, it is likely that a large amount of rules will have small or zero coefficients.
These can be removed, thus simplifying the ensemble. The fitting performance can be improved
by increasing the number of steps along with using a smaller step size. Again, this will be at the
cost of speed performance although only at the training stage. The setting for the parameterτ may
greatly affect the result. Testing with extreme values (close to 0 or 1), will give a feeling for what
is a good choice for the given sample. The optimum value will differ with the training sample, so
that initially the user is advised to use the automatic scan option to derive the best path.

5.9 Support Vector Machine (SVM)

In the early 1960s a linear support vector method has been developed for the construction of sep-
arating hyperplanes for pattern recognition problems [24, 25]. It took 30 years before the method
was generalised to nonlinear separating functions [26, 27] and for estimating real-valued functions
(regression) [28]. At that moment it became a general purpose algorithm, performing classification
and regression tasks which can compete with neural networks and probability density estimators.
Typical applications of SVMs include text categorisation, character recognition, bioinformatics
and face detection.

The main idea of the SVM approach is to build a hyperplane that separates signal and background
vectors(events) using only a minimal subset of all training vectors (support vectors). The position
of the hyperplane is obtained by maximizing the margin (distance) between it and the support vec-
tors. The extension to nonlinear SVMs is performed by mapping the input vectors onto a higher
dimensional feature space in which signal and background events can be separated by a linear pro-
cedure using an optimally separating hyperplane. The use of kernel functions eliminates thereby
the explicit transformation to the feature space and simplifies the computation.

5.9.1 Booking options

The SVM classifier is booked via the command:

factory->BookMethod( TMVA::Types::kSVM, "SVM", "<options>" );

Code Example 33: Booking of the SVM classifier: the first argument is a unique type enumerator, the second is
a user-defined name which must be unique among all booked classifiers, and the third argument is the configuration
option string. Individual options are separated by a ’:’. For options that are not set in the string default values are used.
See Sec.3.1.4for more information on the booking.
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The configuration options for the SVM classifier are given in Option Table13.

Option Values Description

Kernel Linear,

Polynomial,

Gauss*, Sigmoid

Definition of the kernel function:
Linear is K(~x, ~y) = ~x · ~y (no
extra parameters),Polynomial is
K(~x, ~y) = (~x · ~y + θ)d, Gauss is
K(~x, ~y) = exp

(
−|~x− ~y|2 /2σ2

)
, and

Sigmoid corresponds toK(~x, ~y) =
tanh (κ(~x · ~y) + θ)

Sigma 2.0 Width of the Gaussian kernel

Order 3 Order of the Polynomial kernel

Theta 1.0 Parameterθ

Kappa 1.0 Parameterκ

C 1.0 Cost parameter (see Section5.9.2)

Tol 10−3 Tolerance (see Section5.9.4)

Eps 10−12 Numerical precision

Option Table 13: Configuration options for the Support Vector Machine. For the kernel types see Eq. (53). If prede-
fined categories exist, the default category is marked by a ’*’. The options in Option Table3 can also be configured.

5.9.2 Description of the classifier and its implementation

A detailed description of the SVM formalism can be found, for example, in Ref. [29]. Here only
a brief introduction along the TMVA implementation is given.

Linear SVM

Consider a simple two-class classifier with oriented hyperplanes. If the training data is linearly
separable, a vector-scalar pair(~w, b) can be found that satisfies the constraints

yi(~xi · ~w + b)− 1 ≥ 0 , ∀i , (46)

where~xi are the input vectors,yi the desired outputs (yi = ±1), and where the pair(~w, b) defines
a hyperplane. The decision function of the classifier isf(~xi) = sign(~xi · ~w + b), which is+1 for
all points on one side of the hyperplane and−1 for the points on the other side.

Intuitively, the classifier with the largest margin will give better separation. The margin for this
linear classifier is just2/|~w|. Hence to maximise the margin, one needs to minimise thecost func-
tion W = |~w|2/w with the constraints from Eq. (46).

At this point it is beneficial to consider the significance of different input vectors~xi. The training
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Figure 14: Hyperplane classifier in two dimensions. The vectors (events)~x1 and~x2 define the margin, i.e., they are
the support vectors.

events laying on the margins, which are called the support vectors (SV), are the events that con-
tribute to defining the decision boundary (see Fig.14). Hence if the other events are removed from
the training sample and the classifier is retrained on the remaining events, the training will result
in the same decision boundary. To solve the constrained quadratic optimisation problem, we first
reformulate it in terms of a Lagrangian

L(~w, b, ~α) =
1
2
|~w|2 −

∑
i

αi (yi ((~xi · ~w) + b)− 1) (47)

whereαi ≥ 0 and the condition from Eq. (46) must be fulfilled. The LagrangianL is minimised
with respect to~w andb and maximised with respect to~α. The solution has an expansion in terms
of a subset of input vectors for whichαi 6= 0 (the support vectors):

~w =
∑

i

αiyi~xi , (48)

because∂L/∂b = 0 and∂L/∂ ~w = 0 hold at the extremum. The optimisation problem translates
to finding the vector~α which maximises

L(~α) =
∑

i

αi −
1
2

∑
ij

αiαjyiyj~xi · ~xj . (49)

Both the optimisation problem and the final decision function depend only on dot products be-
tween input vectors, which is a crucial property for the generalisation to the nonlinear case.

Nonseparable data

The above algorithm can be extended to nonseparable data. The classification constraints in
Eq. (46) are modified by adding a “slack” variableξi to it (ξi = 0 if the vector is properly classified,
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otherwiseξi is the distance to the decision hyperplane)

yi(~xi · ~w + b)− 1 + ξi ≥ 0, ξi ≥ 0 , ∀i . (50)

This admits a certain amount of misclassification. The training algorithm thus minimises the
modified cost function

W =
1
2
|~w|2 + C

∑
i

ξi , (51)

describing a trade-off between margin and misclassification. The cost parameterC sets the scale
by how much misclassification increases the cost function.

Nonlinear SVM

The SVM formulation given above can be further extended to build a nonlinear SVM which can
classify nonlinearly separable data. Consider a functionΦ : Rnvar → H, which maps the training
data fromRnvar, wherenvar is the number of discriminating input variables, to some higher dimen-
sional spaceH. In theH space the signal and background events can be linearly separated so that
the linear SVM formulation can be applied. We have seen in Eq. (49) that event variables only
appear in the form of dot products~xi · ~xj , which becomeΦ(~xi) ·Φ(~xj) in the higher dimensional
feature spaceH. The latter dot product can be approximated by a kernel function

K(~xi, ~xj) ≈ Φ(~xi) · Φ(~xj) , (52)

which avoids the explicit computation of the mapping functionΦ(~x). This is desirable because the
exact form ofΦ(~x) is hard to derive from the training data. Most frequently used kernel functions
are

K(~x, ~y) = (~x · ~y + θ)d Polynomial,

K(~x, ~y) = exp
(
− |~x− ~y|2 /2σ2

)
Gaussian,

K(~x, ~y) = tanh (κ(~x · ~y) + θ) Sigmoidal.

(53)

It was shown in Ref. [28] that a suitable function kernel must fulfill Mercer’s condition∫
K(~x, ~y)g(~x)g(~y)d~xd~y ≥ 0 , (54)

for any functiong such that
∫

g2(~x)d~x is finite. While Gaussian and polynomial kernels are known
to comply with Mercer’s condition, this is not strictly the case for sigmoidal kernels. To extend
the linear methodology to nonlinear problems one substitutes~xi ·~xj by K(~xi, ~xj) in Eq. (49). Due
to Mercer’s conditions on the kernel, the corresponding optimisation problem is a well defined
convex quadratic programming problem with a global minimum. This is an advantage of SVMs
compared to neural networks where local minima occur.

Implementation

The TMVA implementation of the Support Vector Machine follows closely the description given
in the literature. It employs a sequential minimal optimisation (SMO) [30] to solve the quadratic
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problem. Acceleration of the minimisation is achieved by dividing a set of vectors into smaller
subsets [31]. The SMO method drives the subset selection to the extreme by selecting subsets of
two vectors (for details see Ref. [29]). The pairs of vectors are chosen, using heuristic rules, to
achieve the largest possible improvement (minimisation) per step. Because the working set is of
size two, it is straightforward to write down the analytical solution. The minimisation procedure
is repeated recursively until the minimum is found. The SMO algorithm has proven to be signifi-
cantly faster than other methods and has become the most common minimisation method used in
SVM implementations. The precision of the minimisation is controlled by the tolerance parameter
Tol (see Tab.13). The SVM training time can be reduced by increasing the tolerance.

5.9.3 Ranking

The present implementation of the SVM classifier does not provide a ranking of the input variables.

5.9.4 Performance

The TMVA SVM algorithm comes with linear, polynomial, Gaussian and sigmoidal kernel func-
tions. With sufficient training statistics, the Gaussian kernel allows to approximate any separating
function in the input space. It is crucial for the performance of the SVM to appropriately tune the
kernel parameters (the width in case of a Gaussian kernel), and the cost parameterC. The optimal
tuning is specific to the problem and must be taken care of by the user.

The SVM training time scales liken2 with the number of vectors (events) in the training data set.
The user is therefore advised to restrict the sample size during the first rough scan of the kernel
parameters. Also increasing the minimisation tolerance helps to speed up the training.

SVM is a nonlinear general purpose classification algorithm with a performance similar to neural
networks (Sec.5.6) or to a multidimensional likelihood estimator (Sec.5.3).

6 Summary and Plans

TMVA is a toolkit that unifies highly customizable multivariate classification algorithms in a single
framework thus ensuring convenient use and an objective performance assessment. It is designed
for data mining applications in high-energy physics, but not restricted to these. Source code and
library of TMVA-v.3.5.0 and higher versions are part of the standard ROOT distribution kit (v5.14
and higher). The newest TMVA development version can be downloaded from Sourceforge.net at
http://tmva.sf.net.

This manual introduced the main steps allowing a user to optimise and perform her/his own mul-
tivariate analysis. Let us recall the main features of the TMVA design and purpose:

• TMVA works in transparent factory mode to allow an unbiased performance assessment and
comparison: all classifiers see the same training and test data, and are evaluated following
the same prescription.

• A complete TMVA analysis consists of two steps:

http://tmva.sf.net
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1. Training: the ensemble of available and optimally multivariate customized classifiers
are trained and tested on independent signal and background data samples; the classi-
fiers are evaluated and the most performing and concise ones are selected.

2. Application: selected trained classifiers are used for the classification of data samples
with unknown signal and background composition.

• A Factory class object created by the user organises the customization and interaction
with the classifiers for the training, testing and evaluation phases of the TMVA analysis.
The training results together with the configuration of the classifiers are written to result
(“weight”) files.

• Standardized outputs during the Factory running, and dedicated ROOT macros allow a re-
fined assessment of each classifier’s behaviour and performance.

• Once appropriate classifiers have been chosen by the user, they can be applied to data sam-
ples with unknown classification. Here, the interaction with the classifiers occurs through
a Reader class object created by the user. A classifier is booked by giving the path to its
weight file resulting from the training stage. Then, inside the user’s event loop, the MVA
response is returned by the Reader for each of the booked classifiers, as a function of the
event values of the discriminating variables used as input for the classifiers. Alternatively,
the user may request from the Reader the probability that a given event belongs to the signal
hypothesis.

We give below a summary of the TMVA classifiers, outlining the current state of their implemen-
tation, their advantages and shortcomings.

• Rectangular Cut Optimisation
The current implementation is rather advanced. It includes speed-optimised range searches
using binary trees, and three optimisation algorithms: Monte Carlo sampling, a Genetic
Algorithm and Simulated Annealing. In spite of these tools, optimising the cuts for a large
number of discriminating variables remains challenging. The user is advised to reduce the
available dimensions to the most significant variables (e.g., using a principal component
analysis) prior to optimising the cuts.

• Likelihood
Automatic PDF building through histogram smoothing and approximation with various
spline functions and kernel density estimators is implemented.

• PDERS
The multidimensional likelihood approach is in an advanced development stage providing
several kernel estimation methods, and speed optimised range search using event sorting in
binary trees.

• Fisher and H-Matrix
These are mature algorithms. The Fisher discriminant is linear only in the present imple-
mentation. The addition of higher-order moments is considered.



68

• Artificial Neural Networks
Significant work went into the implementation of fast feed-forward multilayer perceptron
algorithms into TMVA. Two external ANNs have been integrated as fully independent meth-
ods, and another one has been newly developed for TMVA, with emphasis on flexibility
and speed. The performance of the latter ANN (MLP) has been cross checked against the
Stuttgart ANN (using as an exampleτ identification in ATLAS), and was found to achieve
competitive performance.

• Boosted Decision Trees
The BDT implementation has received constant attention over the full year of its develop-
ment. The current version includes additional features like bagging, and manual or auto-
matic node pruning.

• RuleFit
The original libraries written by J. Friedman are publicly available, but not the source code.
We have therefore decided to attempt an independent implementation of this powerful clas-
sification approach. The current version achieves almost equivalent results, with however
usually somewhat better robustness for the original implementation.

• Support Vector Machine
SVM is a relatively new multivariate analysis algorithm with a strong statistical background.
It performs well for non-linear discrimination and is relatively insensitive to overtraining.
Optimisation is straightforward due to a low number of adjustable parameters (only two in
the case of Gaussian kernel). The response speed is slower than for a not-too-exhaustive
neural network, but comparable with other non-linear methods. The current implementation
is complete, but not yet well tested. It is still to be considered a beta version.

Although TMVA has reached a mature status and has been well tested by many users, there exist
limitations that will be worked on for future releases. In particular, the present setup does not allow
an unequal number of training events for signal and background. The reason for this restriction is
that not all classifiers yet properly handle event weights that deviate from one (though the majority
of the classifiers does).

The current emphasis of the TMVA core developments lies on the consolidation and further im-
provement of the existing classifiers and of the TMVA framework. In spite of that new classifiers
are under development. Among these are: Bayesian classifiers and aCommitteeclassifier, building
weighted rules out of arbitrary combinations of TMVA classifiers.
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A Classifier booking

Code Examples34 and35 gives a collection of classifier bookings together with useful default
options. These bookings can also be found in the example training jobTMVAnalysis.C.

factory->BookMethod( TMVA::Types::kCuts, "Cuts",

"MC:EffSel:MC_NRandCuts=100000:AllFSmart" );

factory->BookMethod( TMVA::Types::kLikelihood, "Likelihood",

"!TransformOutput:Spline=2:NSmoothSig[0]=100:NSmoothBkg[0]=10:\

NSmooth=5:NAvEvtPerBin=50" );

factory->BookMethod( TMVA::Types::kLikelihood, "LikelihoodD",

"!TransformOutput:Spline=2:NSmoothSig[0]=100:NSmoothBkg[0]=10:\

NSmooth=5:NAvEvtPerBin=50:Preprocess=Decorrelate" );

factory->BookMethod( TMVA::Types::kLikelihood, "LikelihoodPCA",

"!TransformOutput:Spline=2:NSmoothSig[0]=100:NSmoothBkg[0]=10:\

NSmooth=5:NAvEvtPerBin=50:VarTransform=PCA");

factory->BookMethod( TMVA::Types::kLikelihood, "LikelihoodKDE",

"!TransformOutput:UseKDE:KDEtype=Gauss:KDEiter=Nonadaptive:\

KDEborder=None:NAvEvtPerBin=50" );

factory->BookMethod( TMVA::Types::kPDERS, "PDERS",

"!V:VolumeRangeMode=RMS:KernelEstimator=Teepee:\

MaxVIterations=50:InitialScale=0.99" );

factory->BookMethod( TMVA::Types::kFisher, "Fisher", "!V:Fisher" );

factory->BookMethod( TMVA::Types::kMLP, "MLP",

"!V:NCycles=200:HiddenLayers=N+1,N:TestRate=5" );

factory->BookMethod( TMVA::Types::kBDT, "BDT",

"!V:NTrees=400:BoostType=AdaBoost:SeparationType=GiniIndex:

nEventsMin=20:nCuts=20:PruneMethod=CostComplexity:

PruneStrength=3.5:Preprocess=Decorrelate" );

Code Example 34: Examples for booking classifiers in TMVA. The first argument is a unique type enumerator (the
avaliable types can be looked up insrc/Types.h), the second is a user-defined name (must be unique among all
booked classifiers), and the third a configuration option string that is specific to the classifier. For options that are not
set in the string default values are used. The syntax of the options should become clear from the above examples.
Individual options are separated by a ’:’. Boolean variables can be set either explicitly asMyBoolVar=True/False, or
just viaMyBoolVar/!MyBoolVar. All concrete option variables are explained in Secs.4 and 5. Continued in Code
Example35.
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factory->BookMethod( TMVA::Types::kRuleFit, "RuleFit",

"!V:NTrees=20:SampleFraction=-1:nEventsMin=60:nCuts=20:

MinImp=0.001:Model=ModLinear:GDTau=0.6:GDStep=0.01:

GDNSteps=100000:SeparationType=GiniIndex:RuleMaxDist=1e-5" );

factory->BookMethod( TMVA::Types::kSVM, "SVM_Gauss",

"Sigma=90:C=2:Tol=0.001:Kernel=Gauss");

factory->BookMethod( TMVA::Types::kSVM, "SVM_Poly",

"Order=2:Theta=5:C=0.01:Tol=0.001:Kernel=Polynomial");

factory->BookMethod( TMVA::Types::kSVM, "SVM_Lin",

"!V:Kernel=Linear:C=0.12:Tol=0.0001");

Code Example 35: Continuation from Code Example34.
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