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The toolkit for multivariate analysis, TMVA, provides a large set of advanced multivariate analysis ‘ minimization
techniques for signal/background classification. In addition, TMVA now also contains regression
analysis, all embedded in a framework capable of handling the pre-processing of the data and the
evaluation of the output, thus allowing a simple and convenient use of multivariate techniques. The
analysis techniques implemented in TMVA can be invoked easily and the direct comparison of their
performance allows the user to choose the most appropriate for a particular data analysis.
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