

Multivariate Data Analysis and Machine Learning in High Energy Physics (II)

Helge Voss (MPI–K, Heidelberg)

Graduierten-Kolleg , Freiburg, 11.5-15.5, 2009

Outline

- Summary of last lecture
- A few more words on regression

Classifiers

- Bayes Optimal Analysis -- Kernel Methods and Likelihood Estimators \blacksquare
- **Linear Fisher Discriminant**
- Introduction to TMVA

What we've heard so far:

- Traditional "cuts" on individual variables \rightarrow certainly not the most powerful selection
- Multivariate Analysis is typically more powerful because: Analysis typically more powerful
	- \rightarrow combination of variables
	- \rightarrow effectively acting in the "D"-dimensional input variable (feature) space which also allows → effectively acting in the "D"-dimens
to include/exploit variable correlations
	- y(x), our discriminating function projects the "D"-dimensional feature space onto a 1 dimensional axisSignal
		- **the distributions of** $y(x|S)$ **and** $y(x|B)$ **represent** $PDF_s(y)$ and $PDF_B(y)$
		- **from those PDFs one can calculate the posteriori** probability of an event with variable y being either signal or background, once the overall S/B ratio is known in the data sample:

$$
\frac{f_s PDF_s(y)}{f_s PDF_s(y) + f_B PDF_B(y)} = P(C = S | y)
$$

- **n** placing a CUT then on this 1-dimensional variable y and accepting all events "right of the cut" as signal defines signal selection efficiency as well as background efficiency (rejection)
- this simple cut corresponds to a possibly complicated shaped separation boundary in the original Ddimensional feature space

So far we have not yet seen any "explicit" discriminating function $y(x)$ apart from the "Fisher Discriminant" in the exercises

Helge Voss Graduierten-Kolleg, Freiburg, 11.-15. Mai 2009 ― Multivariate Data Analysis and Machine Learning **3**

Regression

how to estimate a "functional behaviour" from a given set of 'known measurements" ?

Assume for example "D"-variables that somehow characterize the shower in your calorimeter.

F from Monte Carlo or testbeam measurements, you have a data sample with events that measure all D-Variables and the corresponding particle energy

■ the particle energy as a function of the D observables is a surface in the D+1 dimensional space given by D-observables + energy

 while in the typical regression you fit a known anlytic function (i.e. in the above 2-D example, you'd fit the function ax^2+by^2+c to the data. In the regression I'm talking about, the regression function might be so complicated, or the model unknown, that you cannot give a reasonable analytic fit function in closed form. Hence you want something more general, i.e. piecewise defined splines, kernel estimators, decision trees to approximate the function f(x)

Neyman-Pearson Lemma

- Unfortunately, the true probability densities functions are typically unknown:
- \rightarrow Neyman-Pearsons lemma doesn't really help us directly
- **try to estimate the directly functional form of** $p(x|C)$ **:** (i.e. the differential cross section folded with the detector influences) from training events from which the likelihood ratio can be obtained

 \rightarrow e.g. D-dimensional histogram, Kernel densitiy estimators, ...

- **find a "discrimination function"** $y(x)$ **and corresponding decision boundary (i.e. hypersurface in** the "feature space": $y(x) = const$) that optimially separates signal from background
	- \rightarrow e.g. Linear Discriminator, Neural Networks, ...

Nearest Neighbour and Kernel Density Estimator

- **Trying to estimate the probability density** $p(x)$ **in** D-dimensional space:
- The only thing at our disposal is our "training data"
- Say we want to know $p(x)$ at "this" point "x"
- One expects to find in a volume V around point "**x**" N*∫p(x)dx events from a dataset with N events V
- **Say we choose as volume the square drawn** then we find in our dataset of N events, one finds K-events:

$$
K = \sum_{n=1}^{N} k\left(\frac{x - x_n}{h}\right), \text{ with } k(u) = \begin{cases} 1, & |u_i| \le \frac{1}{2}, i = 1...D\\ 0, & \text{otherwise} \end{cases}
$$
 $k(u)$: is called a Kernel function:
rectangular \rightarrow Parzen-Window

"events" distributed according to $p(x)$

- K determined from the "training data" hence now gives an estimate of the mean of the $p(x)$ over the volume V: $\frac{Jp(x)dx}{dx} = K/N$ V $1 \sum_{k=1}^{N} 1$
- Classification: Determine

 $PDF_s(x)$ and $PDF_B(x)$

 \rightarrow likelihood ratio as classifier!

$$
p(x) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{h^b} k\left(\frac{x - x_n}{h}\right)
$$

 \rightarrow Kernel Density estimator of the probability density

Helge Voss Graduierten-Kolleg, Freiburg, 11.-15. Mai 2009 ― Multivariate Data Analysis and Machine Learning **6**

Nearest Neighbour and Kernel Density Estimator

- **Trying to estimate the probability density** $p(x)$ **in** D-dimensional space:
- The only thing at our disposal is our "training data"
- Say we want to know $p(x)$ at "this" point "x"
- One expects to find in a volume V around point "**x**" N*∫p(x)dx events from a dataset with N events V
- **Say we choose as volume the square drawn** then we find in our dataset of N events, one finds K-events:

"events" distributed according to $p(x)$

$$
K = \sum_{n=1}^{N} k \left(\frac{x - x_n}{h} \right), \text{ with } k(u) = \begin{cases} 1, & |u_i| \le \frac{1}{2}, i = 1...D\\ 0, & \text{otherwise} \end{cases}
$$
 $k(u)$: is called a Kernel function:
rectangular \rightarrow Parzen-Window

K determined from the "training data" hence now gives an estimate of the mean of the $p(x)$ over the volume V: $\int p(x)dx = K/N$ V

 $\sum_{i}^{N} f(x_1^i, x_2^i) = \int_{V} \hat{f}(x_1, x_2)$ i $\frac{1}{N} \sum_{i=1}^{N} f(x_1^i, x_2^i) = \int_{N} \hat{f}(x_1, x_2) p(\vec{x}) d\vec{x}$ Regression: If each events with (x_1,x_2) carries a "function value" $f(x_1,x_2)$ (e.g. energy of incident particle) \rightarrow

Nearest Neighbour and Kernel Density Estimator

- **Trying to estimate the probability density** $p(x)$ **in** D-dimensional space:
- The only thing at our disposal is our "training data"
- Say we want to know $p(x)$ at "this" point "x"
- One expects to find in a volume V around point "**x**" N*∫p(x)dx events from a dataset with N events V
- **Say we choose as volume the square drawn** then we find in our dataset of N events, one finds K-events:

$$
K = \sum_{n=1}^{N} k\left(\frac{x - x_n}{h}\right), \quad \text{with} \quad k(u) = \begin{cases} 1, & |u_i| \le \frac{1}{2}, i = 1...D \\ 0, & \text{otherwise} \end{cases}
$$

■ determine K from the "training data" with signal and background mixed together

 \rightarrow kNN : k-Nearest Neighbours relative number events of the various classes amongst the k-nearest neighbours

"events" distributed according to
$$
p(x)
$$

 $y(x) = \frac{mg}{K}$

 n_{s}

Kernel Density Estimator

Parzen Window: "rectangular Kernel" \rightarrow **discontinuities at window edges** \rightarrow smoother model for $p(x)$ when using smooth Kernel Fuctions: e.g. Gaussian

Helge Voss Graduierten-Kolleg, Freiburg, 11.-15. Mai 2009 ― Multivariate Data Analysis and Machine Learning **9**

Kernel Density Estimator

$$
p(\mathbf{x}) = \frac{1}{N} \sum_{n=1}^{N} K_{h}(\mathbf{x} - \mathbf{x}_{n})
$$

: a general probability density estimator using kernel K

- **h**: "size" of the Kernel \rightarrow "smoothing parameter"
- chosen size of the "smoothing-parameter" \rightarrow more important than kernel function
- **h** too small: overtraining
- \blacksquare h too large: not sensitive to features in $p(x)$

for Gaussian kernels, the optimum in terms of MISE (mean integrated squared error) is given by: h_{xi}=(4/(3N))^{1/5} σ_{xi} with σ_{xi} =RMS in variable x_i

■ a drawback of Kernel density estimators: Evaluation for any test events involves ALL TRAINING DATA \rightarrow typically very time consuming

• binary search trees (i.e. Kd-trees) are typically used in kNN methods to speed up searching

Helge Voss Graduierten-Kolleg, Freiburg, 11.-15. Mai 2009 ― Multivariate Data Analysis and Machine Learning **10**

"Curse of Dimensionality" Bellman, R. (1961),

We all know:

Filling a D-dimensional histogram to get a mapping of the PDF is typically unfeasable due to lack of Monte Carlo events.

Shortcoming of nearest-neighbour strategies:

■ in higher dimensional classification/regression cases the idea of looking at "training events" in a reasonably small "vicinity" of the space point to be classified becomes difficult:

consider: total phase space volume V=1D for a cube of a particular fraction of the volume:

edge length=(fraction of volume)^{1/D}

In 10 dimensions: in order to capture 1% of the phase space \rightarrow 63% of range in each variable necessary \rightarrow that's not "local" anymore.. \odot

 \rightarrow Therefore we still need to develop all the alternative classification techniques

Princeton University Press.

Naïve Bayesian Classifier "often called: (projective) Likelihood"

while Kernel methods or Nearest Neighbour classifiers try to estimate the full D-dimensional joint probability distributions

D

i

If correlations between variables are weak: \rightarrow $p(\mathbf{x}) \cong \prod p_i(\mathbf{x})$

■ One of the first and still very popular MVA-algorithm in HEP

- **T** rather than making hard cuts on individual variables, allow for some "fuzzyness": one very signal like variable may counterweigh another les signal like variable
- **This is about the optimal method in the absence of correlations**

PDE introduces fuzzy logic

Naïve Bayesian Classifier "often called: (projective) Likelihood"

How parameterise the 1-dim PDFs ??

*T***MVA-Toolkit for Multivariate Data Analysis**

General Introduction

What is *T*MVA

- One framework for "all" MVA-techniques, available in ROOT
	- Have a common platform/interface for all MVA classifiers:
	- Have common data pre-processing capabilities M)
	- Train and test all classifiers on same data sample and evaluate consistently
	- Provide common analysis (ROOT scripts) and application framework
	- Provide access with and without ROOT, through macros, C++ executables or python
	- *T*MVA is a sourceforge (SF) package for world-wide access
		- Home page ………………....http://tmva.sf.net/ \blacksquare
		- SF project page …………. http://sf.net/projects/tmva п
		- View CVS …………………http://tmva.cvs.sf.net/tmva/TMVA/ \blacksquare
		- Mailing listhttp://sf.net/mail/?group_id=152074 \blacksquare
		- Tutorial TWiki ……………. https://twiki.cern.ch/twiki/bin/view/TMVA/WebHome \blacksquare

Integrated and distributed with ROOT since ROOT v5.11/03

$TM\vee A$ Content

Currently implemented classifiers \blacktriangleright

- Rectangular cut optimisation \blacktriangleright
- Projective and multidimensional likelihood estimator
- k-Nearest Neighbor algorithm
- Fisher and H-Matrix discriminants
- Function discriminant
- Artificial neural networks (3 *multilayer perceptron* implementations)
- Boosted/bagged decision trees
- Rule Fitting
- Support Vector Machine
- Currently implemented data preprocessing stages: \blacksquare
	- **Decorrelation**
	- Principal Value Decomposition
	- Transformation to uniform and Gaussian distributions (*in preparation*)

Using $TMVA$

A typical *T*MVA analysis consists of two main steps:

- *1. Training phase*: training, testing and evaluation of classifiers using data samples with known signal and background composition
- *2. Application phase*: using selected trained classifiers to classify unknown data samples
- \blacksquare Illustration of these steps with toy data samples

2. Excitement

6. Disillusionment

8. Horror

9. Fury

Code Flow for *Training* and *Application* Phases

A Simple Example for *Training*

void TMVAnalysis()

{

TFile* outputFile = TFile::Open("TMVA.root", "RECREATE");

TMVA::Factory *factory = new TMVA::Factory("MVAnalysis", outputFile,"!V");

TFile *input = TFile::Open("tmva_example.root");

factory->AddSignalTree ((TTree*)input->Get("TreeS"), 1.0); factory->AddBackgroundTree ((TTree*)input->Get("TreeB"), 1.0);

factory->AddVariable("var1+var2", 'F'); factory->AddVariable("var1-var2", 'F'); factory->AddVariable("var3", 'F'); factory->AddVariable("var4", 'F');

give training/test trees

create *Factory*

register input variables

factory->PrepareTrainingAndTestTree("", "NSigTrain=3000:NBkgTrain=3000:SplitMode=Random:!V");

Helge Voss Graduierten-Kolleg, Freiburg, 11.-15. Mai 2009 ― Multivariate Data Analysis and Machine Learning **19 factory->BookMethod(TMVA::Types::kLikelihood, "Likelihood", "!V:!TransformOutput:Spline=2:NSmooth=5:NAvEvtPerBin=50"); factory->BookMethod(TMVA::Types::kMLP, "MLP", "!V:NCycles=200:HiddenLayers=N+1,N:TestRate=5"); factory->TrainAllMethods(); factory->TestAllMethods(); factory->EvaluateAllMethods();** outputFile->Close(); delete factory; **}** train, test and evaluate select MVA methods \rightarrow 7MVA tutorial

A Simple Example for an *Application*

void TMVApplication()

Data Preparation

- Data input format: ROOT TTree or ASCII
- Selection any subset or combination or function of available variables
- Apply pre-selection cuts (possibly independent for signal and bkg)
- Define global event weights for signal or background input files
- Define individual event weight (use of any input variable present in training data)
- Choose on out of various methods for splitting into training and test samples:
	- Block wise $\overline{}$
	- Randomly \mathbb{R}^n
	- Periodically (*i*.*^e*. periodically 3 testing ev., 2 training ev., 3 testing ev, 2 training ev. ….)
	- User defined training and test trees $\overline{}$

Choose preprocessing of input variables (*e.g.,* decorrelation)

MVA Evaluation Framework

TMVA is not only a collection of classifiers, but an MVA framework After training, TMVA provides ROOT evaluation scripts (through GUI)

Plot all signal (S) and background (B) input variables with and without pre-processing

Correlation scatters and linear coefficients for S & B

Classifier outputs (S & B) for test and training samples (spot overtraining)

Classifier *Rarity* distribution

Classifier significance with optimal cuts

B rejection versus S efficiency

Classifier-specific plots:

- •Likelihood reference distributions
- •Classifier PDFs (for probability output and Rarity)
- •Network architecture, weights and convergence
- •Rule Fitting analysis plots

•Visualise decision trees

Evaluating the Classifier Training (I)

Projective likelihood PDFs, MLP training, BDTs, … ш

Testing the Classifiers

Classifier output distributions for independent test sample:

Evaluating the Classifier Training

Check for overtraining: classifier output for test *and* training samples …

Evaluating the Classifier Training

Evaluating the Classifiers Training (taken from *T*MVA output…)

Input Variable Ranking

Classifier correlation and overlap

Better variable

Evaluating the Classifiers Training (VII) (taken from *T*MVA output…)

Testing efficiency compared to training efficiency (overtraining check)

Better classifier

Better classifier

TMVA

Receiver Operating Characteristics (ROC) Curve

Smooth background rejection versus signal efficiency curve:

(from cut on classifier output)

