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What we’ve learned yesterday: 
Neyman Pearson: Actually he states the “obvious” if you think about it:

if you want to know to which probability an event with measured variables “x” is either 
signal or background, use the ratio between the “true probability” between observing an 
event with “x” from either signal or background.  

Who is surprised that this is the “best you can do” ?

Unfortunately we basically never have access to the “true probability density”:
hence we try to either estimate the PDFS(x) and PDFB(x) using Kernel Density 
Estimator/Mulitdimensional likelihood (effectively averages of the PDF over regions of the
variable space, derived from training events)   curse of dimensionality!!
or neglect correlations and use 1-dimensional PDF’s no problems with dimensionality
or try a different approach of directly determining  hyperplanes in the feature space that 
separate signal and background events.

There is no magic, you still need to “tune” parameters (e.g size of the region you 
want to average over in PDF estimate) in order to get good results.
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Naïve Bayesian Classifier 
“often called: (projective or 1D) Likelihood”

If correlations between variables are weak: 
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If the correlations between variables is really negligible, 
this classifier is “perfect” (simple, robust, performing)

If not, you seriously loose performance 

How can we “fix” this ? 
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What if there are correlations?
Typically correlations are present:  Cij=cov[ xi , x j ]=E[ xi xj ]−E[ xi ]E[ xj ]≠0  (i≠j)

pre-processing:  choose set of linear transformed input variables for which Cij = 0 (i≠j)



6Helge Voss Graduierten-Kolleg, Freiburg,  11.-15. Mai 2009  ― Multivariate Data Analysis and Machine Learning 

Decorrelation

Attention. This is is able to eliminate only linear correlations!!

Determine square-root C ′ of correlation matrix C, i.e., C = C ′C ′

compute C ′ by diagonalising C:

transformation from original (x) in de-correlated variable space (x′) by: x′ = C ′−1x 

    T TD S SSSC C D′ == ⇒
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Decorrelation: Principal Component Analysis

PCA is typically used to:
reduce dimensionality of a problem
find the most dominant features in your distribution by transforming

The eigenvectors of the covariance matrix with the largest eigenvalues correspond to the 
dimensions that have the strongest correlation in the data set. Along these axis the variance is 
largest

sort the eigenvectors according to their eigenvalues
Dataset is transformed in variable space along these eigenvectors

Along the “first” dimension the data show the largest “features”, the smallest features 
are found in the “last” dimension.
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How to Apply the Pre-Processing Transformation?

In general: the decorrelation for signal and background variables is different
however: for a “test event” we don’t know beforehand if it is signal or background. 

? What do we do?

for likelihood ratio, decorrelate signal and background independently

for other estimators, one need to decide on one of the two…
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Decorrelation at Work

Example: linear correlated Gaussians decorrelation works to 100%
1-D Likelihood on decorrelated sample give best possible performance
compare also the effect on the MVA-output variable!

correlated variables:                                           after decorrelation

(note the different scale on the y-axis… sorry)



11Helge Voss Graduierten-Kolleg, Freiburg,  11.-15. Mai 2009  ― Multivariate Data Analysis and Machine Learning 

Limitations of the Decorrelation

in cases with non-Gaussian distributions and/or nonlinear correlations, 
the  decorrelation needs to be treated with care

How does linear 
decorrelation affect  
cases where 
correlations 
between signal and 
background differ?

Original correlations

Signal Background
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Limitations of the Decorrelation

in cases with non-Gaussian distributions and/or nonlinear correlations, 
the  decorrelation needs to be treated with care

How does linear 
decorrelation affect  
cases where 
correlations 
between signal and 
background differ?

Original correlations

SQRT decorrelation

Signal Background
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Limitations of the Decorrelation

in cases with non-Gaussian distributions and/or nonlinear correlations, 
the  decorrelation needs to be treated with care

How does linear 
decorrelation affect 
strongly nonlinear 
cases ?

Original correlations

BackgroundSignal
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Limitations of the Decorrelation

in cases with non-Gaussian distributions and/or nonlinear correlations, 
the  decorrelation needs to be treated with care

How does linear 
decorrelation affect 
strongly nonlinear 
cases ?

Original correlations

SQRT decorrelation

Watch out before you used decorrelation “blindly”!!

BackgroundSignal
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“Gaussian-isation”

Improve decorrelation by pre-Gaussianisation of variables

First:  transformation to achieve uniform (flat) distribution:
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Second: make Gaussian via inverse error function: 
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The integral can be solved in an unbinned way by event counting,                                       
or by creating non-parametric PDFs (see later for likelihood section)

Third: decorrelate (and “iterate” this procedure)
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OriginalOriginal

“Gaussian-isation”

Signal - GaussianisedSignal - Gaussianised

We cannot simultaneously Gaussianise both signal and background ?! 

Background - GaussianisedBackground - Gaussianised
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OriginalOriginal

“Gaussian-isation”

Signal - GaussianisedSignal - Gaussianised

We cannot simultaneously Gaussianise both signal and background ?! 

Background - GaussianisedBackground - Gaussianised
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Linear Discriminant

If non parametric methods like ‘k-Nearest-Neighbour” or “Kernel Density Estimators” suffer from 
lack of training data “curse of dimensionality”
slow response time need to evaluate the whole training data for every test event

use of parametric models y(x) to fit to the training data

i.e.  any linear function of the input variables:
giving rise to linear decision boundaries ∑

D

1 D 0 i i
i=1

y ︵x = ︷x ,..., x ︸ ︶= w + w x

H1

H0

x1

x2

How do we determine the “weights” w that do “best”??

M

iw h (x)∑1 D i
i=0

y ︵x = ︷x ,..., x ︸ ︶=

Watch out: these lines are NOT the linear function y(x),
but rather the decision boundary given by y(x)=const.

Linear Discriminant:
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Fisher’s Linear Discriminant

0 + ∑
D

1 D i ii=1
y ︵x = ︷x ,...,x ︸ ︶= y ︵x,w ︶= w w x

How do we determine the “weights” w that do “best”??

y(x)

Maximise the “separation” between the two classes
S and B 

minimise overlap of the distribution yS(x) and yB(x)
maximise the distance between the two mean 
values of the classes
minimise the variance within each class

yS(x)yB(x)

maximise
B S

2
B S
2 2
y y

(E(y ) - E(y ))J(w) =
σ +σ

T

T
w Bw "in between" variance= =
w Ww "within" variance

note: these quantities can be calculated from the training data

-1
w S B

∇ J ︵w ︶= 0 ⇒ w ∝ W ︵x - x ︶ the Fisher coefficients
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Linear Discriminant and non linear correlations
assume the following non-linear correlated data:

the Linear discriminant obviousl doesn’t do a very good job here:

Of course, these can easily de-correlated:
here: linear discriminator works perfectly 

on de-correlated data

l 2 2

|

var 0 var 0 var1
var 0var1 a tan
var1

= +
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Linear Discriminant with Quadratic input:
A simple extension of the linear decision boundary to “quadratic” decision boundary:

var0 * var0
var1 * var1
var0 * var1

quadratic decision boundaries in  var0,var1

Performance of Fisher Discriminant:

linear decision boundaries in  var0,var1while: var0
var1

Performance of Fisher Discriminant
with quadratic input:

Fisher
Fisher with decorrelated variables
Fisher with quadratic input
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Training Classifiers and Loss-Function

All classifiers (KNN,Likelihood,Fisher) could be calculated and didn’t require 
parameter fitting
Other classifiers provide a set of “basis” functions (or model) that need to optimally 
adjusted to find the appropriate separating hyperplane(surface)
Let x ∈ Rn be a random variable (i.e. our observables) and y(x)

y a real valued output variable with joint distribution Pr(x,y)  regression
y value 1 for signal, y 0 for background classification

we are looking for a function y(x) that predicts y given certain input variables: 
y(x):Rn R:
Loss function: L(y,y(x))  penalizes errors made in the prediction:

EPE(y(x)) = E(y – y(x))2      squared error loss, typical “loss function” used in regression
by conditioning on “x” we can write:

EPE(y(x)) = E(|y-y(x)|)       misclassification error, typical “loss function” for classification 
problems
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Neural Networks

naturally, if we want to go the “arbitrary” non-linear decision boundaries, y(x) needs to be 
constructed in “any” non-linear fashion

Think of hi(x) as a set of “basis” functions
If h(x) is sufficiently general (i.e. non linear), a linear 
combination of “enough” basis function should allow to 
describe any possible discriminating function y(x)

Imagine you chose hi(x) to be such that:

i0 ij j
j=1

y(x)= A w + w x
⎛ ⎞

⋅⎜ ⎟
⎝ ⎠

∑
D

y(x) =

non linear function of
linear combination of

the input data

K.Weierstrass Theorem:  proves just  that previous statement.

Now we “only” need to find the appropriate “weights” w 

M

0i i0 ij j
i j=1

y(x)= w A w + w x
⎛ ⎞

⋅⎜ ⎟
⎝ ⎠

∑ ∑
D 1A(x)= : the sigmoid function

1-ex

y(x) =
a linear combination of
non linear functions of

linear combination of
the input data
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Neural Networks: Multilayer Perceptron MLP
But before talking about the weights, let’s try to “interpret” the formula as a Neural Network:

input layer hidden layer ouput layer

output:

Dvar
discriminating 
input variables
as input 
+ 1 offset ( ) 1

( ) 1 xA x e
−−= +

“Activation” function
e.g. sigmoid:

or tanh

M

0i i0 ij j
i j=1

y(x)= w A w + w x
⎛ ⎞

⋅⎜ ⎟
⎝ ⎠

∑ ∑
D

1

i

...

D

1

j

M1

...

11w

ijw

1jw...
...

k

...

1jw

Nodes in hidden layer represent the “activation functions” whose arguments are linear 
combinations of input variables non-linear response to the input

The output is a linear combination of the output of the activation functions at the internal nodes

It is straightforward to extend this to “several” input layers

Input to the layers from preceding nodes only feed forward network (no backward loops)

D+1
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Neural Networks: Multilayer Perceptron MLP
But before talking about the weights, let’s try to “interpret” the formula as a Neural Network:

nodes neurons
links(weights) synapses

Neural network: try to simulate reactions of a 
brain to certain stimulus (input data)

input layer hidden layer ouput layer

output:

Dvar
discriminating 
input variables
as input 
+ 1 offset ( ) 1

( ) 1 xA x e
−−= +

“Activation” function
e.g. sigmoid:

or tanh

M

0i i0 ij j
i j=1

y(x)= w A w + w x
⎛ ⎞

⋅⎜ ⎟
⎝ ⎠
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11w
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D+1
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Neural Network Training

idea:  using the “training events” adjust the weights such, that 
y(x) 0 for background events 
y(x) 1 for signal events

how do we adjust ?
minimize Loss function:  

events
2

i
i

L(w) (y(x ) y(C))= −∑ where ( )C ⎧
⎨
⎩

1 for C = signal
y =

0 for C = backgr.

y(x) is a very “wiggly” function with many local minima. A global overall fit in the many 
parameters is possible but not the most efficient method to train neural networks

back propagation (learn from experience, gradually adjust your perception to match reality
online learning (learn event by event  -- not only at the end of your life from all experience)

i.e. use usual “sum of squares”

true 
event type

predicted
event type
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Neural Network Training
back-propagation and online learning

( ) i0 ij j
j=1

= y(x) - y(C) A w + w x
⎛ ⎞

⋅⎜ ⎟
⎝ ⎠

∑
0i

L
w

D∂
∂

start with random weights
adjust weights in each step a bit in the direction of the steepest descend of the “Loss”-
function L

for online learning, the training events should be mixed randomly, otherwise you first steer in a 
wrong direction from which it is afterwards hard to get out again!

2
iL(w) (y(x ) y(C))= −n 1 nw w learning rateη η+ = + ⋅ ∇wL ︵w ︶ =

for weights connected to output nodes
M

0i i0 ij j
i j=1

y(x)= w A w + w x
⎛ ⎞

⋅⎜ ⎟
⎝ ⎠

∑ ∑
D

for weights connected to output nodes
… a bit more complicated formula

note: all these gradients are easily calculated from the training event

training is repeated n-times over the whole training data sample.   how often ??
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Overtraining

S

B

x1

x2 S

B

x1

x2

training is repeated n-times over the whole training data sample.   how often ??
it seems intuitive that this boundary will give better results in another statistically 
independent data set than that one

stop training before you learn statistical 
fluctuations in the data
verify on independent “test” sample

training cycles

cl
as
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fic
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ro

r

training sample

test sample
possible overtraining is concern for every 

“tunable parameter” α of classifiers: 
Smoothing parameter, n-nodes… α



29Helge Voss Graduierten-Kolleg, Freiburg,  11.-15. Mai 2009  ― Multivariate Data Analysis and Machine Learning 

Cross Validation
many (all) classifiers have tuning parameters “α” that need to be controlled against 
overtraining

number of training cycles, number of nodes (neural net)
smoothing parameter h  (kernel density estimator)
….

the more free parameter a classifier has to adjust internally more prone to overtraining 
more training data better training results
division of data set into  “training” and “test” sample reduces the “training” data

Train TrainTrainTrainTest Train

Cross Validation: divide the data sample into say 5 sub-sets

Train TrainTrainTrainTest TrainTrain TrainTrainTrain TestTrain TrainTrain TestTrainTrain TrainTrainTrain TestTrain

train 5  classifiers:  yi(x,α) : i=1,..5, 
classifier yi(x,α) is trained without the i-th sub sample

calculate the test error:
events

i k
kevents

1CV( ) L(y (x , )) L : loss function
N

α α= ∑

choose tuning parameter α for which CV(α) is minimum and train the final classifier 
using all data
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What is the best Network Architecture?

Theoretically a single hidden layer is enough for any problem, provided one allows 
for sufficient number of nodes.  (K.Weierstrass theorem)

“Relatively little is known concerning advantages and disadvantages of using a 
single hidden layer with many  nodes over many hidden layers with fewer nodes. 
The mathematics and approximation theory of the MLP model with more than one 
hdden layer is not very well understood ……”
….”nonetheless there seems to be reason to conjecture that the two hidden layer 
model may be significantly more promising than the single hidden layer model”

(Glen Cowan)

A.Pinkus, “Approximation theory of the MLP model with neural networks”, 
Acta Numerica (1999),pp.143-195 

Typically in high-energy physics, non-linearities are reasonably simple, 
in many cases 1 layer with a larger number of nodes should be enough
but it might well be worth trying more layers (and less nodes in each layer)


