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Last Lecture

m (Boosted-) Decision trees

Decision Tree: sequential application of splits (cuts) - cut out an arbitrary volume
formed out of little cubes in your parameter space
a test event is classified as either signal or background depending on which “cube” (leaf
node) it falls into
“average” over many of those sets of such decision trees: - Boosting
create different trees using modifications of event weighs in training data
AdaBoost, e-Boost, logit-Boost...
Bagging, Random Forest
the brute force method that often prooves very effective and robust although it has
hundreds, thousands of “free” parameters.

simple construction rules - little chance to do things “wrong” (falling in local minima, be
become confused by high dimensional problem with little data)
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Learning with Rule Ensembles

Friedman-Popescu, Tech Rep,

" Following RuleFit approach by Friedman-Popescu Stat. Dpt, Stanford U.. 2003

" Model is linear combination of rules, where a rule is a sequence of cuts

RuleFit classifier  rules (cut sequence normalised
> r,=1if all cuts discriminating

satisfied, =0 otherwise) event variables

T
yRF(X)=a0+Zamrm(>2)+Zbk>2k
m=1 j\k:1

\ )

Y
Sum of rules Linear Fisher term

" The problem to solve is

®  Create rule ensemble: use forest of decision trees

" Fit coefficients a,, b,: gradient direct regularization minimising Risk (Friedman et al.)

" Pruning removes topologically equal rules” (same variables in cut sequence)

One of the elementary cellular automaton rules (Wolfram 1983, 2002). It specifies the next color in a cell, depending
on its color and its immediate neighbors. Its rule outcomes are encoded in the binary representation 30=00011110,.
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Support Vector Machines

m If Neural Networks are complicated by finding the proper optimum “weights” for
best separation power by “wiggly” functional behaviour of the piecewise defined
separation hyperplane

m If KNN (multidimensional likelihood) suffers disadvantage that calculating the
MVA-output of each test event involves evaluation of ALL training events

m If Boosted Decision Trees in theory are always weaker than a perfect Neural
Network

m > Tryto getthe best of all worlds...
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Support Vector Machine

m There are methods to create linear decision boundaries using only measures of
distances

—> leads to quadratic optimisation processs

B The decision boundary in the end is defined only by training events that are
closest to the boundary

B We've seen that variable transformations, i.e moving into a higher dimensional

space (i.e. using var1*var1 in Fisher Discriminant) can allow you to separate
with linear decision boundaries non linear problems

m ->Support Vector Machine
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Support Vector Machines

" Find hyperplane that best separates signal
from background

" Best separation: maximum distance (margin)
between closest events (support) to hyperplane

" Linear decision boundary

" |f data non-separable add misclassification cost
parameter C-Z.&; to minimisation function

®Solution of largest margin depends only on inner
product of support vectors (distances)

-> quadratic minimisation problem

XzA\

Non-separable data

\ support

vectors

margin

>

N

X4
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Support Vector Machines

_____________________

" Find hyperplane that best separates signal
from background

X
w
[

" Best separation: maximum distance (margin)
between closest events (support) to hyperplane

" Linear decision boundary

" |f data non-separable add misclassification cost
parameter C-Z.& to minimisation function

Non-separable data

®Solution depends only on inner product of
support vectors - quadratic minimisation problem

" Non-linear cases:
" Transform variables into higher dimensional feature space where again a linear
boundary (hyperplane) can separate the data

" Explicit transformation doesn’t need to be specified. Only need the “scalar product”
(inner product) x-x = ®(x)-P(x).

" certain Kernel Functions can be interpreted as scalar products between
transformed vectors in the higher dimensional feature space. e.g.: Gaussian,
Polynomial, Sigmoid
" Choose Kernel and fit the hyperplane using the linear techniques developed above
» Kernel size paramter typically needs careful tuning! (Overtraining!)
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See some
Classifiers at Work
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Toy Examples: Linear-, Cross-, Circular Correlations

® |llustrate the behaviour of linear and nonlinear classifiers

Linear correlations Linear correlations Circular correlations
(same for signal and background) (opposite for signal and background) (same for signal and background)
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Weight Variables by Classifier Output

" How well do the classifier resolve the various correlation patterns ?

Linear correlations Cross-linear correlations Circular correlations
(same for signal and background) (opposite for signal and background) (same for signal and background)

Signal and background distributions weighted by BDT output ‘ ‘ Signal and background distributions weighted by BDT output | | Signal and background distributions weighted by BDT output
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General Advice for (MVA) Analyses

m There is no magic in MVA-Methods:

no need to be too afraid of “black boxes”

you typically still need to make careful tuning and do some “hard work”™
B The most important thing at the start is finding good observables

good separation power between S and B

little correlations amongst each other

no correlation with the parameters you try to measure in your signal sample!
B Think also about possible combination of variables

can this eliminate correlation
m Always apply straightforward preselection cuts and let the MVA only do the rest.

B “Sharp features should be avoided” - numerical problems, loss of information
when binning is applied

simple variable transformations (i.e. log(var1) ) can often smooth out these areas and
allow signal and background differences to appear in a clearer way
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Some Words about Systematic Errors

® Typical worries are:
" What happens if the estimated “Probability Density” is wrong ?
" Can the Classifier, i.e. the discrimination function y(x), introduce systematic uncertainties?
" What happens if the training data do not match “reality”

9Any wrong PDF leads to imperfect discrimination function y(x) — _P(X l S)

P(x|B)
élmperfect (calling it “wrong” isn’t “right”) y(x) - loss of discrimination power
that’s all!
—> classical cuts face exactly the same problem, however:

in addition to cutting on features that are not correct, now you can also “exploit”
correlations that are in fact not correct

" Systematic error are only introduced once “Monte Carlo events” with imperfect modeling are

used for
= efficiency; purity ® same problem with classical “cut” analysis
"#expected events ® use control samples to test MVA-output distribution (y(x))

® Combined variable (MVA-output, y(x)) might “hide” problems in ONE individual variable more
than if looked at alone = train classifier with few variables only and compare with data
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Treatment of Systematic Uncertainties

" Is there a strategy however to become ‘less sensitive’ to possible systematic uncertainties

" i.e. classically: variable that is prone to uncertainties - do not cut in the region of
steepest gradient

" classically one would not choose the most important cut on an uncertain variable

" Try to make classifier less sensitive to “uncertain variables”

" i.e. re-weight events in training to decrease separation
“Calibration uncertainty”

may shift the central value
and hence worsen (or
increase) the

in variables with large systematic uncertainty

(certainly not yet a recipe that can strictly be followed, more discrimination power of
an idea of what could perhaps be done) “var4” A
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Classifier output distributions for signal only

Helge Voss

Treatment of Systematic Uncertainties
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Treatment of Systematic Uncertainties

MVA_Fisher MVA_BDT
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Summary of Classifiers and their Properties

Classifiers

e Likel- PDERS

Cuts hood / Kk-NN H-Matrix  Fisher MLP BDT RuleFit SVM
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The properties of the Function discriminant (FDA) depend on the chosen function A
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Summary

m Traditional “cuts” are certainly not the most effective selection technique

m Multivariate Analysis - Combination of variables (taking into account variable
correlations)

B Optimal event selection is based on the likelihood ratio

KNN and Kernal Methods are attempts to estimate the probability density in D-
dimensions

“naive Bayesian” or “projective Likelihood” ignores variable correlations
Use de-correlation pre-processing of the data if appropriate

m More Classifiers:
Fishers Linear discriminant - simple and robust
Neural networks —> very powerful but difficult to train (multiple local minima)
Support Vector machines - one global minimum but needs careful tuning
Boosted Decision Trees > a “brute force method”

m Avoid overtraining

m Systematic errors
be as careful as with “cuts” and check against data
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