

Andreas Höcker, <u>Jörg Stelzer</u>, Fredrik Tegenfeldt, Helge Voss Core Developers Matthew Jachowski, Attila Krasznahorkay, Yahir Mahalalel, Xavier Prudent, Peter Speckmayer Contributors

- Introduction -

- Event classification is main objective of data mining in HEP
 - Signal vs background event separation, particle ID, flavor-tagging, ...
 - Can have many input variables (between ~10 to ~50), often correlated
- Many classification methods exist and are already used in HEP (BABAR almost all analysis use MVA methods)
 - HEP tradition: rectangular cuts (with previous de-correlation) optimization often by hand
 - Also widely accepted: Likelihood (usually in one or two dimensions only)
 - Somewhat new: multidimensional Probability Density Estimators range search
 - Gaining Trust: Artificial Neural Networks
 - Simple, but can be powerful: Fisher Discriminant (BABAR, BELLE: B selection)
 - Newcomers: Boosted Decision Trees (MiniBoone, D0)
 - Powerful new method from Friedman: Rulefit (Study at ATLAS) DØ Run II
 - Uprising: Support Vector Machines (studies for LEP and Tevatron top analysis)

Two Problems

- Skepticism: black box myth, how to evaluate systematics
- Choice of method: by simplicity, availability, hearsay, limited comparison ⁵ (pp → tb+tqb) [pb]

0.9 fb⁻¹

4.9 +1.4 pb

4.6 *1.8 pb

5.0 +1.9 pb

Decision trees

Matrix elements

Bayesian NNs

Z. Sullivan PRD 70, 114012 (2004), m = 175 GeV

– What is TMVA –

- Ideally, for a given problem all MVA methods should be tested
 - Systematically chose the best performing classifier
 - Becoming familiar and gaining experience with other MVA methods takes away the mysticism
- TMVA Toolkit for Multivariate Analysis:
 - Framework for parallel training and evaluation of MVA techniques to guide the user to choose of the best signal-background discriminator for his pur
 - TMVA does not seek to promote any particular classifier, the judgmer up to the user
- Currently Supported Methods
 - Cuts (optimizers: MC sampling, Genetic alg, simulated annealing)
 - 1-dimensional Likelihood Estimator
 - Multi-dimensional Probability Density Estimator (range search)
 - Fisher Discriminant (also H-matrix (χ^2 -estimator))
 - Artificial Neural Network (3 different implementations)
 - Boosted/bagged Decision Trees
 - Rulefit

Transformation of input variables: decorrelation, PCA

- What does TMVA do Exactly -

The analyst provides:

- Training and testing data for signal and background
 - ROOT tree of text file with events
- List of variables to be included in the analysis
- List of MVA methods to be used

• TMVA analysis provides:

- Training, testing and evaluating all user-selected MVA-methods
 - Graphical and numerical evaluation available \rightarrow guide user's choice

Ranking of input variables

- Preliminary general ranking
- Method specific ranking
- Training results are written to self-contained 'weight'-files
 - Weight files also contain the complete training setup of a method
 - Easy to share an analysis setup with colleagues !
 - no need to send code fragments and explanations back and forth
- For data analysis (after successful training and selection of MVA) weight file is used by TMVA::Reader class for classification

- TMVA Development and Distribution -

- **T**MVA is a sourceforge (SF) package to accommodate world-wide access
 - home pagehttp://tmva.sourceforge.net/
 - SF project page<u>http://sourceforge.net/projects/tmva</u>
 - view CVS<u>http://tmva.cvs.sourceforge.net/tmva/TMVA/</u>
 - mailing lists<u>http://sourceforge.net/mail/?group_id=152074</u>
 - ROOT::TMVA class index.....<u>http://root.cern.ch/root/htmldoc/TMVA_Index.html</u>
- Very active project \rightarrow fast response time on feature requests (or bug reports)
 - Currently 4 main developers at CERN, ~23 registered contributors at SF
- Written in C++ using core ROOT functionality
- Integrated and distributed with ROOT since ROOT v5.11-03
 - Available out of the box (ROOT is everywhere)
 - Only thoroughly tested TMVA versions in ROOT
 - Always with up-to-date example in \$ROOTSYS/tmva/test/
- Documentation currently being written, release date next week

- TMVA Technical Details -

TMVA can be used

- C++ executable: (athena), examples SourceForge
- CINT macros: examples at \$ROOTSYS/tmva/test/
- Python (PyROOT), example only at SourceForge

Modular

- Can switch on/off each method
- Simultaneously train multiple instances of one method with different options

Flexible

- Configuration of methods through custom option strings
- Input variables (can be formulas as in TTree::Draw command)
 - Arrays are handled ("p"), but not array indices at present ("p[0]")

User friendly

- Option names easy to interpret
- Default options are already good choice to start with
- Graphical training and evaluation output (macros provided)
- Once trained, classification to real data straight forward
 - C++/CINT example at \$ROOTSYS/tmva/test/TMVApplication.C

ATLAS Statistics Workshop 1/19/2007

TMVA Jörg Stelzer

Decorrelation of Input Variables

- Cuts and projective likelihood perform best/optimal if there is no correlation between input variables
 - Remove linear correlations between input variables by rotation of parameter space

$\mathbf{D} = \mathbf{S}^T \mathbf{C} \mathbf{S}$	Diagonalize (S) the covariance matrix $C \rightarrow D$
$\mathbf{C}' = \mathbf{S} \sqrt{\mathbf{D}} \mathbf{S}^T$	Transform (S ^T) the square root of $D \rightarrow C'$
$\mathbf{x}'(i) = \mathbf{C}^{-1} \mathbf{x}(i)$	Decorrelate input space x with C' ⁻¹ \rightarrow x'

- Separate transformation for signal and background
- De-correlation only complete if
 - input variables are Gaussian
 - Correlations are linear
 - In practice the gain is often only modest

Cuts

Intuitive and most simple method: cut a rectangular volume out of parameter space that defines the signal

$$y_{\text{cut}}(i) \in \{0,1\} = \bigcap_{v \in \{\text{variables}\}} \{x_v(i) \subset [x_{v,\min}, x_{v,\max}]\}$$

- Training samples do often not contain realistic signal and background abundance → no direct optimization for significance
 - Instead scan signal efficiency [0,1] and maximize background rejection
 - Straight forward computation of optimal working point (highest significance) given S and B expectation

Cut optimization:

- MINUIT fit (simplex) was found not to be reliable
- Three different (robust) methods
- 1. Monte Carlo sampling:
 - random scanning of parameter space
 - inefficient for large number of input variables
- 2. Genetic algorithm: Preferred method
 - Samples of cut-sets (a *population*) are evaluated and the fittest *individuals* are crossbred (including mutation) to create the new generation
- 3. Simulated annealing: still need to optimize its performance
 - slow cooling of a metal makes atoms move into lowest energy state, simulated by a energy dependent perturbation probability to recover from local minima

TMVA Jörg Stelzer

Projected Likelihood Estimator

 Probability density functions for all variables combined (for signal and for background) to form likelihood-ratio estimator

$$y_{Lh}(i) = \frac{L_{S}(i)}{L_{S}(i) + L_{B}(i)}, \quad L_{S/B}(i) = \prod_{v \in \{variables\}} p_{S/B,v}(x_{v}(i))$$

Reference PDF

- Optimal MVA approach, if variables are uncorrelated
 - In practice rarely the case, solution: de-correlate input or use different method
- Reference PDFs are automatically generated from training data and represented as histograms (counting) or splines (order 2,3,5) – unbinned kernel estimator in work
- Output of likelihood estimator often strongly peaked at 0 and 1. To ease output parameterization TMVA applies inverse Fermi transformation. $y'_{lh}(i) = -\tau^{-1} \ln(y_{lh}^{-1}(i) - 1)$

Multidimensional PDE

- Extend the one-dimensional approach to *n* dimensions (*n* number of input variables)
 - Carli-Koblitz Range-Search: Searches a volume around event and counts(&weights) signal and background reference events (training sample) this volume (n_{S/B})

$$y_{\text{PDERS}}(i) = \frac{n_{S}(i)/N_{S}}{n_{S}(i)/N_{S} + n_{B}(i)/N_{B}}, \quad n_{S/B}(i) = \prod_{e \in \left\{ \text{reference S/B} \\ \text{events in V(i)} \right\}} W_{e}$$

Volume:

- Size: can be fixed (defined by the data: % of Max-Min or RMS) or adaptive (define by number of events in search volume)
- **Shape**: box or ellipsoid
- Weights as function of the (normalized) distance between test- and reference events in volume can be applied (linear or Gaussian)
- Practical challenges:
 - Need very large training sample (curse of dimensionality of kernel based methods)
 - Fast training, slow evaluation.
 - Speed up range search by sorting reference sample into binary search trees

Linear Fisher Discriminant

- Well-known, simple and elegant MVA method
 - Linear discriminant analysis determines a axis in the input variable hyperspace (F₁,...,F_n, such that a projection of events on this axis pushes signal and background as far away from each other as possible

$$y_{\rm Fi}(i) = F_0 + \sum_{v \in \{\text{variables}\}} F_v x_v(i)$$

- Optimal for linearly correlated Gaussian variables where S and B have different means
- No separation power from variables *v* with different shapes but the same mean $\rightarrow F_v = 0$ W: sum of S and B

covariance matrices

Fisher
Coefficient
$$F_{v} = \frac{\sqrt{N_{s} + N_{B}}}{N_{s}N_{B}} \sum_{l \in \{\text{variables}\}} W_{vl}^{-1} (\overline{x}_{s,l} - \overline{x}_{B,l}), \quad \mathbf{W} = \mathbf{C}_{s} + \mathbf{C}_{B}$$

H-matrix estimator: poor man's variation of Fisher discriminant

Artificial Neural Network (ANN)

- ANNs are non-linear discriminants
 - Non linearity from activation function. (Fisher is an ANN with linear activation function)
- Multilayer perceptron: fully connected, feed forward, 1..N_H hidden layers
 - Can approximate every continuous function to arbitrary precision with just one layer and infinite nodes (Weierstrass)
 Input #1
 Input #2
 Input #4
 Input #4

Typical activation function

Training of an MLP: back-propagation method

- Randomly feed signal and background events to MLP and compare the desired output {0,1} with the received output (0,1): ε = d - r
- Correct weights, depending on ε and learning rate η

(Boosted) Decision Trees

Tree structure classifier (S and B leafs) Classifies events by following a sequence of decisions ROOT-Node depending on the events variable content until a S or B leaf S.B Training the tree: e.g. split minimizes Gini-index $\operatorname{Var}_{i} < x_{i}^{1} \quad \operatorname{Var}_{i} \ge x_{i}^{1}$ S,B $Gini = \frac{S_1 B_1}{S_1 + B_1} + \frac{S_2 B_2}{S_2 + B_2}$ S₂,B₂ (S₁,B₁ eaf-Node Node S₁ < B₁ other splitting criteria: significance, cross-entropy, S_2, B_2 Bka misclassification error Decision trees are robust in many dimensions but by $\operatorname{Var}_{k} < x_{k}^{2} \quad \operatorname{Var}_{k} \ge x_{k}^{2}$ itself not powerful (similar to cuts) \rightarrow Need to boost eaf-Node Method to combine classifiers: boosting (also $S_4 > B_4$ Node S_3, B_3 Signal implemented: bagging) Developed by statisticians in last decade $\operatorname{Var}_{i} < x_{i}^{3}$ $\operatorname{Var}_{i} \ge x_{i}^{3}$ Boosting: (Adaboost) Re-weight events, higher weight for misclassified events Leaf-Node _eaf-Node $S_5 < B_5$ $S_6 > B_6$ lower for correctly classified events Bka Signal Retrain and repeat \rightarrow set of classifiers Classify data by a weighted vote of the classifiers

TMVA

Jörg Stelzer

Rulefitter

- New and powerful method of J.Friedman
 - Belongs to the class of combined classifiers
 - This one combines decision trees from a 'random forest'
 - Also adds a linear discriminant (Fisher) term

$$y_{\rm RF}(i) = F_0 + \sum_{m \in \{\text{base classifier}\}} a_m y_m(x(i)) \sum_{v \in \{\text{variables}\}} F_v x_v(i)$$

- Random subsets of training data used to create random forest of decision trees (y_m)
- Coefficients a_m are then fitted
 - Friedman, Popescu, "*Gradient Directed Regularization for Linear Regression and Classification*", Technical report, statistics department, Stanford University 2003

- Training (from TMVAnalysis.C) -

// create the root output file
TFile* target = TFile::Open("TMVA.root", "RECREATE");

// create the factory object
TMVA_Factory *factory = new TMVA_Factory("Project", target, "");

TFile * input = TFile::Open("tmva_example.root"); TTree *signal = (TTree*)input->Get("TreeS"); TTree *background = (TTree*)input->Get("TreeB");

factory->SetInputTrees(signal, background, sWeight, bWeight); factory->AddVariable("var1+var2",'F');factory->AddVariable("var1-var2",'F'); factory->AddVariable("var3", 'F'); factory->AddVariable("var4", 'F');

factory->BookMethod(TMVA::Types::kCuts, "CutsD", "!V:MC:EffSel:MC_NRandCuts=200000:VarTranform=Decorrelate");

```
factory->BookMethod( TMVA::Types::kLikelihood, "LikelihoodPCA",
    "!V:!TransformOutput:Spline=2:NSmooth=5:VarTransform=PCA");
```

// Train all configured MVAs using the set of training events
factory->TrainAllMethods();

// Evaluate all configured MVAs using the set of test events
factory->TestAllMethods();

// Evaluate and compare performance of all configured MVAs
factory->EvaluateAllMethods();

// open the GUI for the root macros
TMVAGui();

Create the Factory

Tell the Factory about your data

Book desired methods/options

Perform training and evaluation

Open the GUI for performance plots

ATLAS Statistics Workshop 1/19/2007

TMVA Jörg Stelzer

- Training (from TMVAnalysis.C) -

Factory	· Evoluation mo	nulta wankad bu baat l	rignal off @P	-0 101				
Factory	• Evaluation res			-0.10				
Factory	: MVA	Signal efficiency	(error):	Signifi-	Sepa-	mu-Trans-		
Factory	: Methods:	@B=0.01 @B=0.10	@B=0.30	cance:	ration:	form:		
Factory	:							
Factory	: Fisher	: 0.292(07) 0.690(0	7) 0.900(04)	1.261	0.484	0.991		
Factory	: LikelihoodPCA	: 0.245(06) 0.684(0	7) 0.896(04)	1.330	0.477	0.867		
Factory	: MLP	: 0.287(07) 0.682(0	7) 0.903(04)	1.328	0.483	0.991		
Factory	: LikelihoodD	: 0.287(07) 0.673(0)	7) 0.898(04)	1.331	0.480	0.861		
Factory	: HMatrix	: 0.075(04) 0.663(0	7) 0.884(05)	1.179	0.451	0.991		
Factory	: PDERS	: 0.225(06) 0.646(0	7) 0.878(05)	1.258	0.449	0.911		
Factory	: BDT	: 0.200(06) 0.641(0	7) 0.872(05)	1.219	0.432	0.991		
Factory	: RuleFit	: 0.245(06) 0.632(0	7) 0.882(05)	1.246	0.451	0.901		
Factory	: CutsGA	: 0.262(06) 0.622(0	7) 0.868(05)	0.000	0.000	0.000		
Factory	: Likelihood	: 0.155(05) 0.538(0)	7) 0.810(06)	0.983	0.353	0.767		
Factory	:							
Factory	:							
Factory	: Testing effici	iency compared to train	ning efficiend	cy (overtra	aining ch	leck)		
Factory	:							
Factory	: MVA	Signal efficiency: fro	om test samp	Paakaroup	d raigation		lofficionov	
Factory	: Methods:	@B=0.01	@B=0.10	Баскугоци	a rejection	i versus olyna	il efficiency	TMVA
Factory	:		c	1				
Factory	: Fisher	: 0.292 (0.235)	0.690 (0.69	E		- V-		=
Factory	: LikelihoodPCA	: 0.245 (0.222)		0.95				
Factory	: MLP	: 0.287 (0.232)	0.682 (0.6	09 E-M	VA Metho	d		E
Factory	LikelinoodD	: 0.287 (0.245)			Fie	hor		
Factory	: HMatrix	: 0.075 (0.058)		0.85	1 13			
Factory	· PDERS	: 0.225 (0.335)		E	ML	.Р		0
Factory	· BDT	: 0.200 (0.240)	0.641 (0.0	0.8	Lik	elihoodD	· · · ·	
Factory	: Rulefit	0.245 (0.242)		0.75	Lik	elihoodPCA	S	E III
Factory	· Likeliheed	0.202 (0.103)		0.70 E _	Ru	leFit	Ne	
Factory	· LIKEIIII00a	• 0.155 (0.137)	0.536 (0.5	0.7				
Factory	•			È				
				0.65	BL			
				0.6	Cu	tsc So	F	
				0.0 E -	— HM			
				0.55		d Jd		·····
				0.5	a			E. M (1,,E
				0.0	115	0.3 0.4 0	.5 0.6 0.7	0.8 0.9 1
							Si	ignal efficlency
					•			

ATLAS Statistics Workshop 1/19/2007

TMVA Jörg Stelzer

- Application (from TMVApplication.C) -

// create the Reader object

TMVA::Reader *reader = new TMVA::Reader();

// create a set of variables and declare them to the reader Float_t var1, var2, var3, var4; reader->AddVariable("var1+var2", &var1); reader->AddVariable("var1-var2", &var2); reader->AddVariable("var3", &var3); reader->AddVariable("var4", &var4);

```
TTree* theTree = (TTree*)input->Get("TreeS");
Float_t userVar1, userVar2;
theTree->SetBranchAddress( "var1", &userVar1 );
theTree->SetBranchAddress( "var2", &userVar2 );
theTree->SetBranchAddress( "var3", &var3 );
theTree->SetBranchAddress( "var4", &var4 );
```

```
// loop over user data
for (Long64_t ievt=0; ievt<theTree->GetEntries();ievt++) {
    theTree->GetEntry(ievt);
    var1 = userVar1 + userVar2;
    var2 = userVar1 - userVar2;
    histBdt ->Fill( reader->EvaluateMVA( "BDT method") );
}
```

Create the Reader

Declare the variables that will hold your data

Chose the MVA method you like best

Prepare the user data

Analyze the user data, fill histogram, etc.

Application (from TMVApplication.C) –

Use for further analysis (Fit for signal yield, systematic studies, etc.)

– Toy Example – Also with SF and ROOT –

- Simple toy to illustrate the strength of the de-correlation technique
 - 4 linearly correlated Gaussians, with equal RMS and shifted means between signal and background

Decorrelation of Training Input

7MVA

Jörg Stelzer

Likelihood and Cuts Improvement

- On linearly correlated variables Fisher is already the optimum
- Decorrelation of input: LH and Cuts comparable with Fisher

TMVA

Jörg Stelzer

More Information

7MVA

Jörg Stelzer

ATLAS Statistics Workshop 1/19/2007

Summary

- TMVA is now a mature package
 - User feedback from many HEP collaborations (including neutrino physics)
- Integration into ROOT essential
- Emphasis on consolidating and improving current methods as well as the TMVA framework
 - Providing user interface to Athena (AOD, EventView analyses)
 - Standalone application of methods
- New methods are being developed
 - Support vector machine
 - Bayesian Classifier
 - Committee method
 - Optimizes arbitrary combinations of MVA methods